
Random Simulation — §5.1 86

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and
probabilistic models.

Example. Determine the best elevator delivery scheme.

◮ The wait is too long, too many stops along the way.

Random Simulation — §5.1 86

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and
probabilistic models.

Example. Determine the best elevator delivery scheme.

◮ The wait is too long, too many stops along the way.

◮ Inconvenient to experiment with alternate delivery schemes.

◮ Disrupt normal service
◮ Take surveys of customers
◮ Confuse regular customers

Random Simulation — §5.1 86

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and
probabilistic models.

Example. Determine the best elevator delivery scheme.

◮ The wait is too long, too many stops along the way.

◮ Inconvenient to experiment with alternate delivery schemes.

◮ Disrupt normal service
◮ Take surveys of customers
◮ Confuse regular customers

◮ Alternatively, run a computer simulation. Write a computer
program that models the system of elevators, including:

◮ Time of arrival of passengers (a random event)
◮ Passenger destination (a random event)
◮ Capacity of elevator (fixed by system)
◮ Speed of elevator (fixed by system)
◮ Current delivery scheme

Random Simulation — §5.1 87

Simulation Modeling

Once you have written the computer program,

Verify that the simulation models the current real-world situation

Then, modify various parameters in order to simulate a new
delivery scheme.

Random Simulation — §5.1 87

Simulation Modeling

Once you have written the computer program,

Verify that the simulation models the current real-world situation

◮ Run the model many times.

◮ Have the computer keep track of data, such as average wait
time, number of stops it takes, longest queue, etc.

Then, modify various parameters in order to simulate a new
delivery scheme.

Random Simulation — §5.1 87

Simulation Modeling

Once you have written the computer program,

Verify that the simulation models the current real-world situation

◮ Run the model many times.

◮ Have the computer keep track of data, such as average wait
time, number of stops it takes, longest queue, etc.

Then, modify various parameters in order to simulate a new
delivery scheme.

◮ How do the data change?

◮ Is the alternate scheme better or worse?

◮ Determine how to implement to cause minimal disruption.

Random Simulation — §5.1 88

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

CONS:

Random Simulation — §5.1 88

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

◮ It is a relatively easy method to approximate complex systems.

CONS:

Random Simulation — §5.1 88

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

◮ It is a relatively easy method to approximate complex systems.

◮ Once built, it allows for tinkering—easy to do sensitivity analysis.

CONS:

Random Simulation — §5.1 88

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

◮ It is a relatively easy method to approximate complex systems.

◮ Once built, it allows for tinkering—easy to do sensitivity analysis.

◮ It can model systems over difficult-to-measure time frames.

CONS:

Random Simulation — §5.1 88

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

◮ It is a relatively easy method to approximate complex systems.

◮ Once built, it allows for tinkering—easy to do sensitivity analysis.

◮ It can model systems over difficult-to-measure time frames.

CONS:

◮ You have to build it. (Expensive to develop!)

◮ Requires computing power and time.

Random Simulation — §5.1 88

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

◮ It is a relatively easy method to approximate complex systems.

◮ Once built, it allows for tinkering—easy to do sensitivity analysis.

◮ It can model systems over difficult-to-measure time frames.

CONS:

◮ You have to build it. (Expensive to develop!)

◮ Requires computing power and time.

◮ Makes you over-confident in the results.

Random Simulation — §5.1 88

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

◮ It is a relatively easy method to approximate complex systems.

◮ Once built, it allows for tinkering—easy to do sensitivity analysis.

◮ It can model systems over difficult-to-measure time frames.

CONS:

◮ You have to build it. (Expensive to develop!)

◮ Requires computing power and time.

◮ Makes you over-confident in the results.

◮ Dealing with probability, so results will always be of the form:
“With 95% probability, the wait time will be less than 2 minutes.”

Random Simulation — §5.1 89

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

◮ RandomInteger gives a pseudo-random integer.

◮ RandomReal gives a pseudo-random real number.

Random Simulation — §5.1 89

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

◮ RandomInteger gives a pseudo-random integer.
◮ RandomInteger[] (no input) gives either 0 or 1.
◮ RandomInteger[5] gives an integer from 0 to 5.
◮ RandomInteger[{1, 10}] gives an integer from 1 to 10.

◮ RandomReal gives a pseudo-random real number.

Random Simulation — §5.1 89

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

◮ RandomInteger gives a pseudo-random integer.
◮ RandomInteger[] (no input) gives either 0 or 1.
◮ RandomInteger[5] gives an integer from 0 to 5.
◮ RandomInteger[{1, 10}] gives an integer from 1 to 10.
◮ RandomInteger[{1, 10},20] gives a list of 20 such integers.

◮ RandomReal gives a pseudo-random real number.

The first input gives the range; a second input tells how many to make.

Random Simulation — §5.1 89

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

◮ RandomInteger gives a pseudo-random integer.
◮ RandomInteger[] (no input) gives either 0 or 1.
◮ RandomInteger[5] gives an integer from 0 to 5.
◮ RandomInteger[{1, 10}] gives an integer from 1 to 10.
◮ RandomInteger[{1, 10},20] gives a list of 20 such integers.

◮ RandomReal gives a pseudo-random real number.
◮ RandomReal[] (no input) gives a real number between 0 or 1.
◮ RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.

The first input gives the range; a second input tells how many to make.

Random Simulation — §5.1 89

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

◮ RandomInteger gives a pseudo-random integer.
◮ RandomInteger[] (no input) gives either 0 or 1.
◮ RandomInteger[5] gives an integer from 0 to 5.
◮ RandomInteger[{1, 10}] gives an integer from 1 to 10.
◮ RandomInteger[{1, 10},20] gives a list of 20 such integers.

◮ RandomReal gives a pseudo-random real number.
◮ RandomReal[] (no input) gives a real number between 0 or 1.
◮ RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.
◮ RandomReal[{0.1, 0.2},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.

Random Simulation — §5.1 89

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

◮ RandomInteger gives a pseudo-random integer.
◮ RandomInteger[] (no input) gives either 0 or 1.
◮ RandomInteger[5] gives an integer from 0 to 5.
◮ RandomInteger[{1, 10}] gives an integer from 1 to 10.
◮ RandomInteger[{1, 10},20] gives a list of 20 such integers.

◮ RandomReal gives a pseudo-random real number.
◮ RandomReal[] (no input) gives a real number between 0 or 1.
◮ RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.
◮ RandomReal[{0.1, 0.2},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.

The numbers produced by a random number generator are never
truly random because they are produced by an algorithm on a
deterministic machine.

Random Simulation — §5.1 90

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’.

Random Simulation — §5.1 90

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’. Then evaluating
RandomInteger[1,20] will generate a list of 20 coin tosses.

Random Simulation — §5.1 90

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’. Then evaluating
RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]

Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

Random Simulation — §5.1 90

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’. Then evaluating
RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]

Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

The sum of this list is the total number of heads tossed.

In[2]: Total[CoinFlips]

Out[2]: 13

Random Simulation — §5.1 90

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’. Then evaluating
RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]

Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

The sum of this list is the total number of heads tossed.

In[2]: Total[CoinFlips]

Out[2]: 13

Running the commands again will simulate another trial of 20 flips.

Advanced Random Simulation — §5.1 91

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

Advanced Random Simulation — §5.1 91

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

◮ First, Mathematica evaluates the ‘condition’.

◮ If ‘condition’ is true, the statement evaluates the ‘t’ part.

◮ If ‘condition’ is false, the statement evaluates the ‘f’ part.

Advanced Random Simulation — §5.1 91

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

◮ First, Mathematica evaluates the ‘condition’.

◮ If ‘condition’ is true, the statement evaluates the ‘t’ part.

◮ If ‘condition’ is false, the statement evaluates the ‘f’ part.

Examples of conditions:

x<0 (x==0) && (y!=1) RandomInteger[]==1

Note the double equals sign == and not equals !=.

Advanced Random Simulation — §5.1 91

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

◮ First, Mathematica evaluates the ‘condition’.

◮ If ‘condition’ is true, the statement evaluates the ‘t’ part.

◮ If ‘condition’ is false, the statement evaluates the ‘f’ part.

Examples of conditions:

x<0 (x==0) && (y!=1) RandomInteger[]==1

Note the double equals sign == and not equals !=.

Examples.

◮ If[x<0, -x, x] is the absolute value function. Why?

Advanced Random Simulation — §5.1 91

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

◮ First, Mathematica evaluates the ‘condition’.

◮ If ‘condition’ is true, the statement evaluates the ‘t’ part.

◮ If ‘condition’ is false, the statement evaluates the ‘f’ part.

Examples of conditions:

x<0 (x==0) && (y!=1) RandomInteger[]==1

Note the double equals sign == and not equals !=.

Examples.

◮ If[x<0, -x, x] is the absolute value function. Why?

◮ If[RandomInteger[] == 1, "Head", "Tail"]

gives “Head” half the time and gives “Tail” half the time.

Advanced Random Simulation — §5.1 92

Using If statements in Table commands

Goal: Model a 7.5% chance of occurrence.
Recall that RandomReal[] outputs a random number between 0 and 1.
To model a 7.5% chance of occurrence, split the interval at .

0 1

Advanced Random Simulation — §5.1 92

Using If statements in Table commands

Goal: Model a 7.5% chance of occurrence.
Recall that RandomReal[] outputs a random number between 0 and 1.
To model a 7.5% chance of occurrence, split the interval at .

0 1

Anything to the left of the split will be taken as success.

Advanced Random Simulation — §5.1 92

Using If statements in Table commands

Goal: Model a 7.5% chance of occurrence.
Recall that RandomReal[] outputs a random number between 0 and 1.
To model a 7.5% chance of occurrence, split the interval at .

0 1

Anything to the left of the split will be taken as success.

To model this is Mathematica, use an If statement.
trial = RandomReal[]

success = If[trial <= 0.075, 1, 0]

Advanced Random Simulation — §5.1 92

Using If statements in Table commands

Goal: Model a 7.5% chance of occurrence.
Recall that RandomReal[] outputs a random number between 0 and 1.
To model a 7.5% chance of occurrence, split the interval at .

0 1

Anything to the left of the split will be taken as success.

To model this is Mathematica, use an If statement.
trial = RandomReal[]

success = If[trial <= 0.075, 1, 0]

Alternatively, do this is one step:
If[RandomReal[] <= 0.075, 1, 0]

Advanced Random Simulation — §5.1 93

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Advanced Random Simulation — §5.1 93

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Advanced Random Simulation — §5.1 93

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

Advanced Random Simulation — §5.1 93

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

◮ If we add the entries Total[trials], we get # successes.
One time I ran it had 32 successes.

Advanced Random Simulation — §5.1 93

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

◮ If we add the entries Total[trials], we get # successes.
One time I ran it had 32 successes.

◮ Alternatively, Tally[trials] gives how many times
distinct entries appear. Output: {{0, 468}, {1, 32}}

Advanced Random Simulation — §5.1 93

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

◮ If we add the entries Total[trials], we get # successes.
One time I ran it had 32 successes.

◮ Alternatively, Tally[trials] gives how many times
distinct entries appear. Output: {{0, 468}, {1, 32}}

◮ Last, we might want a visualization;
Use Histogram[trials] to get:

0.5 1.0 1.5 2.0

100

200

300

400

500

Advanced Random Simulation — §5.1 94

If statements and For loops

For[start,test,incr,body]

Advanced Random Simulation — §5.1 94

If statements and For loops

For[start,test,incr,body]

◮ First, Mathematica evaluates the code in start.

◮ As long as test is true, (Can happen many times!)

◮ Continue to evaluate body and do the increment incr.

Advanced Random Simulation — §5.1 94

If statements and For loops

For[start,test,incr,body]

◮ First, Mathematica evaluates the code in start.

◮ As long as test is true, (Can happen many times!)

◮ Continue to evaluate body and do the increment incr.

Example. For[i = 0, i < 4, i++, Print[i]]

◮ First, Mathematica defines i to be equal to 0.

◮ Next, it checks to see if i is less than 4.

◮ It is, so it evaluates Print[i], and increments i by 1 (i++).

Advanced Random Simulation — §5.1 94

If statements and For loops

For[start,test,incr,body]

◮ First, Mathematica evaluates the code in start.

◮ As long as test is true, (Can happen many times!)

◮ Continue to evaluate body and do the increment incr.

Example. For[i = 0, i < 4, i++, Print[i]]

◮ First, Mathematica defines i to be equal to 0.

◮ Next, it checks to see if i is less than 4.

◮ It is, so it evaluates Print[i], and increments i by 1 (i++).

◮ Now i = 1, which is still < 4. So ‘Print[i]’ is evaluated and
i is incremented. Similarly for i = 2 and i = 3. Now i is
incremented to 4, which is NOT < 4, and the loop terminates.

Advanced Random Simulation — §5.1 94

If statements and For loops

For[start,test,incr,body]

◮ First, Mathematica evaluates the code in start.

◮ As long as test is true, (Can happen many times!)

◮ Continue to evaluate body and do the increment incr.

Example. For[i = 0, i < 4, i++, Print[i]]

◮ First, Mathematica defines i to be equal to 0.

◮ Next, it checks to see if i is less than 4.

◮ It is, so it evaluates Print[i], and increments i by 1 (i++).

◮ Now i = 1, which is still < 4. So ‘Print[i]’ is evaluated and
i is incremented. Similarly for i = 2 and i = 3. Now i is
incremented to 4, which is NOT < 4, and the loop terminates.

This variable i is called a counter.
Be careful to name counters wisely! They are defined as variables.

Advanced Random Simulation — §5.1 95

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

Advanced Random Simulation — §5.1 95

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

◮ Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

◮ Each time the loop evaluates,
◮ Generate a random integer between 0 and 1.
◮ If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

Advanced Random Simulation — §5.1 95

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

◮ Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

◮ Each time the loop evaluates,
◮ Generate a random integer between 0 and 1.
◮ If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

For[loopCount = 1, loopCount <= 20, loopCount++,

flip = RandomInteger[];

If[flip == 1, Print["Head"], Print["Tail"]]]

Advanced Random Simulation — §5.1 95

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

◮ Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

◮ Each time the loop evaluates,
◮ Generate a random integer between 0 and 1.
◮ If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

For[loopCount = 1, loopCount <= 20, loopCount++,

flip = RandomInteger[];

If[flip == 1, Print["Head"], Print["Tail"]]]

◮ Notice the == and also the ; that separates the commands.

Advanced Random Simulation — §5.1 95

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

◮ Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

◮ Each time the loop evaluates,
◮ Generate a random integer between 0 and 1.
◮ If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

For[loopCount = 1, loopCount <= 20, loopCount++,

flip = RandomInteger[];

If[flip == 1, Print["Head"], Print["Tail"]]]

◮ Notice the == and also the ; that separates the commands.

◮ loopCount is ONLY a counter; it does not change each step’s
evaluation.

Advanced Random Simulation — §5.1 96

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

Advanced Random Simulation — §5.1 96

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

◮ Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
◮ Run the loop 20 times by having loopCount vary from 1 to 20.
◮ Each time the loop evaluates,

◮ Generate a random integer between 0 and 1.
◮ If ‘1’, output ‘Head’ AND

◮ If ‘0’, output ‘Tail’ AND

Advanced Random Simulation — §5.1 96

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

◮ Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
◮ Run the loop 20 times by having loopCount vary from 1 to 20.
◮ Each time the loop evaluates,

◮ Generate a random integer between 0 and 1.
◮ If ‘1’, output ‘Head’ AND increase ‘headCount’,
◮ If ‘0’, output ‘Tail’ AND increase ‘tailCount’.

Advanced Random Simulation — §5.1 96

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

◮ Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
◮ Run the loop 20 times by having loopCount vary from 1 to 20.
◮ Each time the loop evaluates,

◮ Generate a random integer between 0 and 1.
◮ If ‘1’, output ‘Head’ AND increase ‘headCount’,
◮ If ‘0’, output ‘Tail’ AND increase ‘tailCount’.

◮ After 20 iterations, display ‘headCount’ and ‘tailCount’.

Advanced Random Simulation — §5.1 96

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

◮ Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
◮ Run the loop 20 times by having loopCount vary from 1 to 20.
◮ Each time the loop evaluates,

◮ Generate a random integer between 0 and 1.
◮ If ‘1’, output ‘Head’ AND increase ‘headCount’,
◮ If ‘0’, output ‘Tail’ AND increase ‘tailCount’.

◮ After 20 iterations, display ‘headCount’ and ‘tailCount’.

headCount=0; tailCount=0;

For[loopCount = 1, loopCount <= 20, loopCount++,

If[RandomInteger[]==1,

Print["Head"]; headCount++, ← Notice the ‘;’
Print["Tail"]; tailCount++]] ← Notice the ‘++’

{headCount, tailCount}

Advanced Random Simulation — §5.1 97

Simulating rolling a biased die

Suppose you have a four-sided die, where the four sides (A, B, C,
and D) come up with probabilities 1/2, 1/4, 1/8, and 1/8, respectively.

0 1

Advanced Random Simulation — §5.1 97

Simulating rolling a biased die

Suppose you have a four-sided die, where the four sides (A, B, C,
and D) come up with probabilities 1/2, 1/4, 1/8, and 1/8, respectively.

A B C D

0 11�2 3�4 7�8

Advanced Random Simulation — §5.1 97

Simulating rolling a biased die

Suppose you have a four-sided die, where the four sides (A, B, C,
and D) come up with probabilities 1/2, 1/4, 1/8, and 1/8, respectively.

A B C D

0 11�2 3�4 7�8

◮ Reset the counters: ‘aCount=bCount=cCount=dCount=0’.
◮ For loopCount from 1 to 20,

◮ Generate a random real number between 0 and 1.
◮ If between 0 and 1/2, then output ‘A’ and aCount++

if between 1/2 and 3/4, then output ‘B’ and bCount++
if between 3/4 and 7/8, then output ‘C’ and cCount++
if between 7/8 and 1, then output ’D’ and dCount++

◮ Display ‘aCount’, ‘bCount’, ‘cCount’, and ‘dCount’.

Advanced Random Simulation — §5.1 98

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

Advanced Random Simulation — §5.1 98

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

◮ Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

Advanced Random Simulation — §5.1 98

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

◮ Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

◮ These If statements all have no “False” part. (; vs ,)

Advanced Random Simulation — §5.1 98

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

◮ Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

◮ These If statements all have no “False” part. (; vs ,)
◮ Important: You MUST set a variable for the roll. Otherwise,

calling RandomInteger four times will have you comparing
different random numbers in each If statement.

Advanced Random Simulation — §5.1 98

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

◮ Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

◮ These If statements all have no “False” part. (; vs ,)
◮ Important: You MUST set a variable for the roll. Otherwise,

calling RandomInteger four times will have you comparing
different random numbers in each If statement.

◮ If you are feeling fancy, you can use one Which command
instead of four If commands.

Advanced Random Simulation — §5.1 99

Using Simulation to Calculate Area

Suppose you have a region whose area you don’t know. You can
approximate the area using a Monte Carlo simulation.

Idea: Surround the region by a rectangle. Randomly chosen points
in the rectangle will fall in the region with probability

(area of region)/(area of rectangle)

We can approximate this probability by calculating

(points falling in region)/(total points chosen).

Advanced Random Simulation — §5.1 100

Using Simulation to Calculate Area

Example. What is the area under the curve sin(x) from 0 to π?

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Randomly select 100 points from the rectangle [0, π] × [0, 1].

[Choose a random real between 0 and π for the x-coordinate

and a random real between 0 and 1 for the y-coordinate. . .]

Then,
Area of region

≈
Number of points in region

100
.

Advanced Random Simulation — §5.1 100

Using Simulation to Calculate Area

Example. What is the area under the curve sin(x) from 0 to π?

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Randomly select 100 points from the rectangle [0, π] × [0, 1].

[Choose a random real between 0 and π for the x-coordinate

and a random real between 0 and 1 for the y-coordinate. . .]

Then,
Area of region

≈
Number of points in region

100
.

Here, 63 points fell in the region; we estimate the area to be .

Compare this to the actual value,
∫
x=π

x=0
sin(x) dx = [− cos(x)]x=π

x=0
= 2

	Random Simulation — §5.1
	Advanced Random Simulation — §5.1

