Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day. Question: How often, and how many balls should you order from the factory?

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.
Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?
Pros: No need to store the balls.
Can adapt to market conditions.
Cons: Pay for delivery each day.

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.
Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?
 Pros: No need to store the balls.
 Can adapt to market conditions.
 Cons: Pay for delivery each day.

Suppose the delivery cost is $\$ 100$ per shipment.

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.
Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?
 Pros: No need to store the balls. Can adapt to market conditions.
 Cons: Pay for delivery each day.

Suppose the delivery cost is $\$ 100$ per shipment.

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.
Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?
 Pros: No need to store the balls.
 Can adapt to market conditions.
 Cons: Pay for delivery each day.

Suppose the delivery cost is Suppose the carrying cost is $\$ 100$ per shipment.

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.
Question: How often, and how many balls should you order from the factory?
Perhaps 20 each day?
Pros: No need to store the balls.
Can adapt to market
conditions.
Cons: Pay for delivery each day.

Suppose the delivery cost is Suppose the carrying cost is $\$ 100$ per shipment. $\$ 0.05$ per ball per day.
\star We are trying to find the optimal ordering schedule.

An ordering schedule example

One possible schedule: Order 100 balls every five days.

An ordering schedule example

One possible schedule: Order 100 balls every five days.

Day	Delivery?	Delivery Cost	Number in Inventory	Carrying Cost
1	\checkmark	$\$ 100$	100	$\$ 5$

An ordering schedule example

One possible schedule: Order 100 balls every five days.

Day	Delivery?	Delivery Cost	Number in Inventory	Carrying Cost
1	\checkmark	$\$ 100$	100	$\$ 5$
2	\times	$\$ 0$	80	$\$ 4$

An ordering schedule example

One possible schedule: Order 100 balls every five days.

Day	Delivery?	Delivery Cost	Number in Inventory	Carrying Cost
1	\checkmark	$\$ 100$	100	$\$ 5$
2	\times	$\$ 0$	80	$\$ 4$
3	\times	$\$ 0$	60	$\$ 3$

An ordering schedule example

One possible schedule: Order 100 balls every five days.

Day	Delivery?	Delivery Cost	Number in Inventory	Carrying Cost
1	\checkmark	$\$ 100$	100	$\$ 5$
2	\times	$\$ 0$	80	$\$ 4$
3	\times	$\$ 0$	60	$\$ 3$
4	\times	$\$ 0$	40	$\$ 2$
5	\times	$\$ 0$	20	$\$ 1$

An ordering schedule example

One possible schedule: Order 100 balls every five days.

Day	Delivery?	Delivery Cost	Number in Inventory	Carrying Cost
1	\checkmark	$\$ 100$	100	$\$ 5$
2	\times	$\$ 0$	80	$\$ 4$
3	\times	$\$ 0$	60	$\$ 3$
4	\times	$\$ 0$	40	$\$ 2$
5	\times	$\$ 0$	20	$\$ 1$
6	\checkmark	$\$ 100$	100	$\$ 5$

An ordering schedule example

One possible schedule: Order 100 balls every five days.

Day	Delivery?	Delivery Cost	Number in Inventory	Carrying Cost
1	\checkmark	$\$ 100$	100	$\$ 5$
2	\times	$\$ 0$	80	$\$ 4$
3	\times	$\$ 0$	60	$\$ 3$
4	\times	$\$ 0$	40	$\$ 2$
5	\times	$\$ 0$	20	$\$ 1$
6	\checkmark	$\$ 100$	100	$\$ 5$

Total delivery cost for 5 days: $\$ 100$
Total carrying cost for 5 days: $\$ 5+\$ 4+\$ 3+\$ 2+\$ 1=\$ 15$.

An ordering schedule example

One possible schedule: Order 100 balls every five days.

Day	Delivery?	Delivery Cost	Number in Inventory	Carrying Cost
1	\checkmark	$\$ 100$	100	$\$ 5$
2	\times	$\$ 0$	80	$\$ 4$
3	\times	$\$ 0$	60	$\$ 3$
4	\times	$\$ 0$	40	$\$ 2$
5	\times	$\$ 0$	20	$\$ 1$
6	\checkmark	$\$ 100$	100	$\$ 5$

Total delivery cost for 5 days: $\$ 100$
Total carrying cost for 5 days: $\$ 5+\$ 4+\$ 3+\$ 2+\$ 1=\$ 15$.
How many deliveries in a year?
Total yearly cost:

An ordering schedule example

In general: Order 20k balls every k days.
Total delivery cost for k days: $\$ 100$
Total carrying cost for k days: $\$ k+\$(k-1)+\cdots+\$ 2+\$ 1=$

An ordering schedule example

In general: Order 20k balls every k days.
Total delivery cost for k days: $\$ 100$
Total carrying cost for k days: $\$ k+\$(k-1)+\cdots+\$ 2+\$ 1=$ How many deliveries in a year?

An ordering schedule example

In general: Order 20k balls every k days.
Total delivery cost for k days: $\$ 100$
Total carrying cost for k days: $\$ k+\$(k-1)+\cdots+\$ 2+\$ 1=$ How many deliveries in a year?
Total yearly cost: $C=\frac{365}{k}\left(100+\frac{k(k+1)}{2}\right)$.

An ordering schedule example

In general: Order 20k balls every k days.
Total delivery cost for k days: $\$ 100$
Total carrying cost for k days: $\$ k+\$(k-1)+\cdots+\$ 2+\$ 1=$ How many deliveries in a year?
Total yearly cost: $C=\frac{365}{k}\left(100+\frac{k(k+1)}{2}\right)$.
Find the k that minimizes this function.
Solving $\frac{d C}{d k}=365\left(-\frac{100}{k^{2}}+\frac{1}{2}\right)=0$
Gives $k \approx 14.1$. Answer?

An ordering schedule example

In general: Order 20k balls every k days.
Total delivery cost for k days: $\$ 100$
Total carrying cost for k days: $\$ k+\$(k-1)+\cdots+\$ 2+\$ 1=$ How many deliveries in a year?
Total yearly cost: $C=\frac{365}{k}\left(100+\frac{k(k+1)}{2}\right)$.
Find the k that minimizes this function.
Solving $\frac{d C}{d k}=365\left(-\frac{100}{k^{2}}+\frac{1}{2}\right)=0$
Gives $k \approx 14.1$. Answer?

- There may be other considerations, such as a maximum or minimum shipment...

The language of optimization

Optimization questions cover a wide variety of situations.

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

Fact: You face an optimization problem.

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

Fact: You face an optimization problem.
It has a feasible set: The set of all valid choices.

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

Fact: You face an optimization problem.
It has a feasible set: The set of all valid choices.
It has an objective function: The function we are optimizing over the feasible set.

$$
f:\left\{\begin{array}{c}
\text { feasible } \\
\text { set }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { some measure } \\
\text { of goodness }
\end{array}\right\}
$$

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

Fact: You face an optimization problem.
It has a feasible set: The set of all valid choices.
It has an objective function: The function we are optimizing over the feasible set.

$$
f:\left\{\begin{array}{c}
\text { feasible } \\
\text { set }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { some measure } \\
\text { of goodness }
\end{array}\right\}
$$

Our feasible set is \qquad and the objective function is \qquad

The language of optimization

In our soccer ball example,

- Our feasible set is the set of positive integers.
- The objective function is the total yearly cost associated to delivering every k days.

The language of optimization

In our soccer ball example,

- Our feasible set is the set of positive integers.
- The objective function is the total yearly cost associated to delivering every k days.

Things you know:

- Optimize can mean either maximize or minimize.
- If $f(x)$ is differentiable on a closed interval (feasible set), Then the maximum and minimum of $f(x)$ both exist, And they occur at a critical point or at the boundary.

