Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.

Question: How often, and how many balls should you order from the factory?

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.

Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?

Pros: No need to store the balls. Can adapt to market conditions.

Cons: Pay for delivery each day.

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.

Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?

Pros: No need to store the balls. Can adapt to market conditions.

Cons: Pay for delivery each day.

Suppose the delivery cost is \$100 per shipment.

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.

Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?

Pros: No need to store the balls. Can adapt to market conditions.

Cons: Pay for delivery each day.

Suppose the delivery cost is \$100 per shipment.

Perhaps a year's worth?

Pros: Only pay delivery once!

Cons: Must store the balls.

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.

Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?

Pros: No need to store the balls.

Can adapt to market conditions.

Cons: Pay for delivery each day.

Suppose the delivery cost is \$100 per shipment.

Perhaps a year's worth?

Pros: Only pay delivery once!

Cons: Must store the balls.

Suppose the carrying cost is \$0.05 per ball per day.

Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.

Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?

Pros: No need to store the balls.

Can adapt to market conditions.

Cons: Pay for delivery each day.

Suppose the delivery cost is \$100 per shipment.

Perhaps a year's worth?

Pros: Only pay delivery once!

Cons: Must store the balls.

Suppose the carrying cost is \$0.05 per ball per day.

★ We are trying to find the optimal ordering schedule.

An ordering schedule example

An ordering schedule example

		Delivery	Number in	Carrying
Day	Delivery?	Cost	Inventory	Cost
1	√	\$100	100	\$ 5

An ordering schedule example

			Delivery	Number in	Carrying
	Day	Delivery?	Cost	Inventory	Cost
•	1	✓	\$100	100	\$ 5
	2	×	\$0	80	\$4

An ordering schedule example

			Delivery	Number in	Carrying
	Day	Delivery?	Cost	Inventory	Cost
•	1	✓	\$100	100	\$ 5
	2	×	\$0	80	\$4
	3	×	\$0	60	\$ 3

An ordering schedule example

		Delivery	Number in	Carrying
Day	Delivery?	Cost	Inventory	Cost
1	✓	\$100	100	\$ 5
2	×	\$0	80	\$ 4
3	×	\$0	60	\$ 3
4	×	\$0	40	\$ 2
5	×	\$0	20	\$ 1

An ordering schedule example

		Delivery	Number in	Carrying
Day	Delivery?	Cost	Inventory	Cost
1	\checkmark	\$100	100	\$ 5
2	×	\$0	80	\$4
3	×	\$0	60	\$3
4	×	\$0	40	\$ 2
5	×	\$0	20	\$ 1
6	\checkmark	\$100	100	\$ 5

An ordering schedule example

One possible schedule: Order 100 balls every five days.

		Delivery	Number in	Carrying
Day	Delivery?	Cost	Inventory	Cost
1	✓	\$100	100	\$ 5
2	×	\$0	80	\$4
3	×	\$0	60	\$3
4	×	\$0	40	\$ 2
5	×	\$0	20	\$ 1
6	\checkmark	\$100	100	\$ 5

Total delivery cost for 5 days: \$100

Total carrying cost for 5 days: \$5+\$4+\$3+\$2+\$1=\$15.

An ordering schedule example

One possible schedule: Order 100 balls every five days.

		Delivery	Number in	Carrying
Day	Delivery?	Cost	Inventory	Cost
1	✓	\$100	100	\$ 5
2	×	\$0	80	\$4
3	×	\$0	60	\$ 3
4	×	\$0	40	\$ 2
5	×	\$0	20	\$ 1
6	\checkmark	\$100	100	\$ 5

Total delivery cost for 5 days: \$100

Total carrying cost for 5 days: \$5+\$4+\$3+\$2+\$1=\$15.

How many deliveries in a year?

Total yearly cost:

An ordering schedule example

In general: Order 20k balls every k days.

Total delivery cost for k days: \$100

Total carrying cost for k days: $k + (k-1) + \cdots + 2 + 1 = 1$

An ordering schedule example

In general: Order 20k balls every k days.

Total delivery cost for k days: \$100

Total carrying cost for k days: $k + (k-1) + \cdots + 2 + 1 = 0$

How many deliveries in a year?

An ordering schedule example

In general: Order 20k balls every k days.

Total delivery cost for k days: \$100

Total carrying cost for k days: $k + (k-1) + \cdots + 2 + 1 = 0$

How many deliveries in a year?

Total yearly cost: $C = \frac{365}{k} (100 + \frac{k(k+1)}{2})$.

An ordering schedule example

In general: Order 20k balls every k days.

Total delivery cost for k days: \$100

Total carrying cost for k days: $k + (k-1) + \cdots + 2 + 1 = k$

How many deliveries in a year?

Total yearly cost: $C = \frac{365}{k} \left(100 + \frac{k(k+1)}{2}\right)$.

Find the k that minimizes this function.

Solving
$$\frac{dC}{dk} = 365\left(-\frac{100}{k^2} + \frac{1}{2}\right) = 0$$

Gives $k \approx 14.1$. Answer?

An ordering schedule example

In general: Order 20k balls every k days.

Total delivery cost for k days: \$100

Total carrying cost for k days: $k + (k-1) + \cdots + 2 + 1 = k$

How many deliveries in a year?

Total yearly cost: $C = \frac{365}{k} (100 + \frac{k(k+1)}{2})$.

Find the k that minimizes this function.

Solving
$$\frac{dC}{dk} = 365\left(-\frac{100}{k^2} + \frac{1}{2}\right) = 0$$

Gives $k \approx 14.1$. Answer?

► There may be other considerations, such as a maximum or minimum shipment...

The language of optimization

Optimization questions cover a wide variety of situations.

The language of optimization

Optimization questions cover a wide variety of situations.

Example. You are given the choice of **one** of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike & Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M&M's

The language of optimization

Optimization questions cover a wide variety of situations.

Example. You are given the choice of **one** of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike & Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M&M's

Fact: You face an optimization problem.

The language of optimization

Optimization questions cover a wide variety of situations.

Example. You are given the choice of **one** of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike & Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M&M's

Fact: You face an optimization problem.

It has a **feasible set**: The set of all valid choices.

The language of optimization

Optimization questions cover a wide variety of situations.

Example. You are given the choice of **one** of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike & Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M&M's

Fact: You face an optimization problem.

It has a feasible set: The set of all valid choices.

It has an **objective function**: The function we are optimizing over the feasible set.

$$f: \left\{ egin{array}{ll} ext{feasible} \ ext{set} \end{array}
ight\}
ightarrow \left\{ egin{array}{ll} ext{some measure} \ ext{of goodness} \end{array}
ight\}$$

The language of optimization

Optimization questions cover a wide variety of situations.

Example. You are given the choice of **one** of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike & Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M&M's

Fact: You face an optimization problem.

It has a feasible set: The set of all valid choices.

It has an **objective function**: The function we are optimizing over the feasible set.

$$f: \left\{ egin{array}{ll} ext{feasible} \ ext{set} \end{array}
ight\}
ightarrow \left\{ egin{array}{ll} ext{some measure} \ ext{of goodness} \end{array}
ight\}$$

Our feasible set is _____ and the objective function is _____.

The language of optimization

In our soccer ball example,

- ▶ Our feasible set is the set of positive integers.
- ► The objective function is the total yearly cost associated to delivering every *k* days.

The language of optimization

In our soccer ball example,

- ▶ Our feasible set is the set of positive integers.
- ► The objective function is the total yearly cost associated to delivering every *k* days.

Things you know:

- Optimize can mean either maximize or minimize.
- ► If f(x) is differentiable on a closed interval (feasible set), Then the maximum and minimum of f(x) both exist, And they occur at a critical point or at the boundary.