Optimization: Inventory Policy

As the manager of a large retail store, you sell 20 soccer balls a day.

Question: How often, and how many balls should you order from the factory?

Perhaps 20 each day?	Perhaps a year's worth?
Pros: No need to store the balls.	Pros: Only pay delivery once!
Can adapt to market	Cons: Must store the balls.
conditions.	
Cons: Pay for delivery each day.	
Suppose the delivery cost is \$100 per shipment.	Suppose the carrying cost is \$0.05 per ball per day.

 \star We are trying to find the optimal ordering schedule.

An ordering schedule example

One possible schedule: Order 100 balls every five days.

		Delivery	Number in	Carrying
Day	Delivery?	Cost	Inventory	Cost
1	\checkmark	\$100	100	\$5
2	\times	\$0	80	\$ 4
3	×	\$0	60	\$ 3
4	×	\$0	40	\$ 2
5	×	\$0	20	\$ 1
6	\checkmark	\$100	100	\$5

Total delivery cost for 5 days: \$100 Total carrying cost for 5 days: 5+\$4+\$3+\$2+\$1=\$15. How many deliveries in a year? Total yearly cost:

An ordering schedule example

In general: Order 20*k* balls every *k* days.

Total delivery cost for k days: 100Total carrying cost for k days: $k + (k - 1) + \dots + 2 + 1 =$ How many deliveries in a year? Total yearly cost: $C = \frac{365}{k} (100 + \frac{k(k+1)}{2})$. Find the k that minimizes this function. Solving $\frac{dC}{dk} = 365(-\frac{100}{k^2} + \frac{1}{2}) = 0$

Gives $k \approx 14.1$. Answer?

There may be other considerations, such as a maximum or minimum shipment...

The language of optimization

Optimization questions cover a wide variety of situations.

Example. You are given the choice of **one** of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike & Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M&M's

Fact: You face an optimization problem.

It has a **feasible set**: The set of all valid choices.

It has an **objective function**: The function we are optimizing over the feasible set.

$$f: \left\{ \begin{array}{c} \text{feasible} \\ \text{set} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{some measure} \\ \text{of goodness} \end{array} \right\}$$

Our feasible set is _____ and the objective function is _

The language of optimization

In our soccer ball example,

- Our feasible set is the set of positive integers.
- The objective function is the total yearly cost associated to delivering every k days.

Things you know:

- Optimize can mean either maximize or minimize.
- If f(x) is differentiable on a closed interval (feasible set),
 Then the maximum and minimum of f(x) both exist,
 And they occur at a critical point or at the boundary.