
Matrix Multiplication 74

Vectors

We will be using vectors and matrices to store and manipulate data.

Definition: A vector ~v is a column of numbers. Use bold faced
letters or vector signs to distinguish vectors from other variables.

We refer to the entries of a vector by using subscripts.

The length of a vector is the number of entries it has. (normally n)

Example. ~v =





v1
v2
v3



 =





1
2
3



 =
[

1 2 3
]T

.
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Definition: A vector ~v is a column of numbers. Use bold faced
letters or vector signs to distinguish vectors from other variables.

We refer to the entries of a vector by using subscripts.

The length of a vector is the number of entries it has. (normally n)

Example. ~v =





v1
v2
v3



 =





1
2
3



 =
[

1 2 3
]T

.

Example. Use a vector to represent the age distribution
of a population: let Fi be the number of females with

ages in the interval
[

5i , 5(i + 1)
)

. We can represent ~F =















F0
F1
F2
...

Fn−1













the total female population by the vector ~F.
The females from 0 up to 5 are counted in F0;
those from 5 up to 10 are counted in F1, etc.
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Matrices

Definition: A matrix A is a two-dimensional array of numbers.

A matrix with m rows and n columns is called an
“m by n”

m × n matrix.

⋆ Row by column — Row by column — Row by column ⋆

Note: A vector can be thought of as an n × 1 matrix.
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Matrices

Definition: A matrix A is a two-dimensional array of numbers.

A matrix with m rows and n columns is called an
“m by n”

m × n matrix.

⋆ Row by column — Row by column — Row by column ⋆

Note: A vector can be thought of as an n × 1 matrix.

Matrices are denoted by a capital letter. Entries are lower case and
have two subscripts, the corresponding row and column.

Example. A generic 2× 3 matrix has the form A =

[

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

]

.

Definition: The matrix B =

[

30 50
100 250

]

is a square matrix

because it has the same number of rows as columns.
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Matrices

Example. We will sometimes interpret a matrix as a transition matrix.

In this case, the matrix is square (say n× n), where the n rows and
n columns correspond to certain states (situations).

An entry ai ,j represents transitioning from state j to state i .
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Matrices

Example. We will sometimes interpret a matrix as a transition matrix.

In this case, the matrix is square (say n× n), where the n rows and
n columns correspond to certain states (situations).

An entry ai ,j represents transitioning from state j to state i .

Example. In our population example, suppose we want to model
people getting older, transitioning from one state (age group) to
the next. We would set up a transition matrix such as:

FROM state:

T
O

st
at
e:













0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0













,

because everyone in the first age group
will move to the second age group (a2,1),
everyone in state 2 will move to state 3
(a3,2), etc.
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Matrix Multiplication

The power of matrices arises in their multiplication.

Given two matrices, A of size m × k and B of size l × n, we can
find the product AB if and only if k equals l .

Let A be an m × k matrix and B , k × n. Then AB is of size m × n.
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The power of matrices arises in their multiplication.

Given two matrices, A of size m × k and B of size l × n, we can
find the product AB if and only if k equals l .

Let A be an m × k matrix and B , k × n. Then AB is of size m × n.

To calculate the entries of AB , remember: “Row by column”:

[

1 4
−1 0

] [

2 0 6
−4 1 2

]

=

[

© © ©

© © ©

]
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Matrix Multiplication

The power of matrices arises in their multiplication.

Given two matrices, A of size m × k and B of size l × n, we can
find the product AB if and only if k equals l .

Let A be an m × k matrix and B , k × n. Then AB is of size m × n.

To calculate the entries of AB , remember: “Row by column”:

[

1 4
−1 0

] [

2 0 6
−4 1 2

]

=

[

© © ©

© © ©

]

When we write A2, this means AA; A3 means AAA, etc.




1 1 1
0 1 1
0 0 1





2

=





1 1 1
0 1 1
0 0 1









1 1 1
0 1 1
0 0 1



 =





1 © ©

0 1 ©

0 0 1
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The power of transition matrices

Example. Modeling a changing population using a matrix model.

Let us choose a size of age interval ∆=5 years (“Delta”), and divide
the female population into states:

State 0: ages [0, 5) with F0 = 150 females
State 1: ages [5, 10) with F1 = 200 females
State 2: ages [10, 15) with F2 = 180 females
State 3: ages [15, 20) with F3 = 120 females
State 4: ages [20, 25) with F4 = 60 females
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The power of transition matrices

Example. Modeling a changing population using a matrix model.

Let us choose a size of age interval ∆=5 years (“Delta”), and divide
the female population into states:

age distribution vector:

State 0: ages [0, 5) with F0 = 150 females
State 1: ages [5, 10) with F1 = 200 females
State 2: ages [10, 15) with F2 = 180 females ~F =













150
200
180
120
60











State 3: ages [15, 20) with F3 = 120 females
State 4: ages [20, 25) with F4 = 60 females
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The power of transition matrices

Example. Modeling a changing population using a matrix model.

Let us choose a size of age interval ∆=5 years (“Delta”), and divide
the female population into states:

age distribution vector:

State 0: ages [0, 5) with F0 = 150 females
State 1: ages [5, 10) with F1 = 200 females
State 2: ages [10, 15) with F2 = 180 females ~F =













150
200
180
120
60











State 3: ages [15, 20) with F3 = 120 females
State 4: ages [20, 25) with F4 = 60 females

Using a transition matrix, we can determine the population in 5 years:

A · ~F =













0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0













1 











150
200
180
120
60













=













0
150
200
180
120
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Leslie Matrices

The transition matrix in the previous example is not entirely realistic,
because people die and are born

To take death into account, modify:
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Leslie Matrices

The transition matrix in the previous example is not entirely realistic,
because people die and are born

To take death into account, modify:

To take birth into account, modify:
(¡ females !)

The resulting transition matrix is called a Leslie matrix:
Let mi be the average number of females that women in state i bear.
Let pi be the fraction of women in state i that survive to state i + 1.
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Leslie Matrices

The transition matrix in the previous example is not entirely realistic,
because people die and are born

To take death into account, modify:

To take birth into account, modify:
(¡ females !)

The resulting transition matrix is called a Leslie matrix:
Let mi be the average number of females that women in state i bear.
Let pi be the fraction of women in state i that survive to state i + 1.

then















F0(t +∆)
F1(t +∆)
F2(t +∆)

...
Fn−1(t +∆)















=















m0 m1 m2 · · · mn−1

p0 0 0 · · · 0
0 p1 0 · · · 0
...

. . .
...

0 · · · 0 pn−2 0





























F0(t)
F1(t)
F2(t)
...

Fn−1(t)















~F(t +∆) = M · ~F(t)



Leslie Matrices — §1.5 80

Leslie Matrices

Example. An animal population example (p. 47)
The population in three age groups, F0 = 80, F1 = 40, and F2 = 20.

Suppose that as ∆ time passes, everyone in state 2 dies, and one
quarter of everyone else dies. Also suppose that the age-specific
maternity rates are m0 = 0, m1 = 1, and m2 = 2. Determine the
Leslie matrix and the population distributions at times ∆ and 2∆.



 0 0
0 0









80
40
20



 =







 = ~F(∆)



 0 0
0 0











 =







 = ~F(2∆)
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Leslie Matrices

Example. Problem 1.5.6 from page 51.

(a) For the Leslie matrix M =

[

3/2 2
1/2 0

]

, show that

M

[

4
1

]

= 2

[

4
1

]

and M

[

−1
1

]

= −
1

2

[

−1
1

]

.
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Leslie Matrices

Example. Problem 1.5.6 from page 51.

(a) For the Leslie matrix M =

[

3/2 2
1/2 0

]

, show that

M

[

4
1

]

= 2

[

4
1

]

and M

[

−1
1

]

= −
1

2

[

−1
1

]

.

(b) Let

[

x0
y0

]

be any initial population. Find a and b so that
[

x0
y0

]

= a

[

4
1

]

+ b

[

−1
1

]

.
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Leslie Matrices

Example. Problem 1.5.6 from page 51.

(a) For the Leslie matrix M =

[

3/2 2
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, show that
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x0
y0

]

be any initial population. Find a and b so that
[

x0
y0

]

= a

[

4
1

]

+ b

[

−1
1

]

.

(c) Find

[

xn
yn

]

= Mn

[

x0
y0

]

using parts (a) and (b).



Leslie Matrices — §1.5 81

Leslie Matrices
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(d) Show that the total population Pn ≈ P02
n.
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(d) Show that the total population Pn ≈ P02
n.

◮ A Leslie matrix model is more descriptively realistic than the
exponential model from Section 1.4, yet gives the same results.
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Leslie Matrices

Example. Problem 1.5.6 from page 51.

(a) For the Leslie matrix M =

[

3/2 2
1/2 0

]

, show that

M

[

4
1

]

= 2
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4
1

]

and M

[

−1
1

]
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1

2
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1
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be any initial population. Find a and b so that
[

x0
y0

]

= a

[

4
1

]

+ b

[

−1
1

]

.

(c) Find

[

xn
yn

]

= Mn

[

x0
y0

]

using parts (a) and (b).

(d) Show that the total population Pn ≈ P02
n.

◮ A Leslie matrix model is more descriptively realistic than the
exponential model from Section 1.4, yet gives the same results.

◮ We’ve just worked with eigenvalues and eigenvectors!
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Markov Chains

A Markov chain is a sequence of random variables from some sample
space, each corresponding to a successive time interval. From one time
interval to the next, there is a fixed probability ai ,j of transitioning
from state j to state i . No transition depends on a past transition.

Keep track of these probabilities in an associated transition matrix A.
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A Markov chain is a sequence of random variables from some sample
space, each corresponding to a successive time interval. From one time
interval to the next, there is a fixed probability ai ,j of transitioning
from state j to state i . No transition depends on a past transition.

Keep track of these probabilities in an associated transition matrix A.
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Markov Chains

A Markov chain is a sequence of random variables from some sample
space, each corresponding to a successive time interval. From one time
interval to the next, there is a fixed probability ai ,j of transitioning
from state j to state i . No transition depends on a past transition.

Keep track of these probabilities in an associated transition matrix A.

Example. Suppose you run a rental company based in Orlando and
Tampa, Florida. People often drive between the cities; cars can be
picked up and dropped off in either city. Suppose that historically,

Orlandon

Orlandon+160%

Tampan+140%

Tampan

Orlandon+130%

Tampan+170%

What distribution of cars can the company expect in the long run?
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Markov Chains

We will model this situation with a Markov Chain.

The historical data suggest that with a
probability of 0.6, a car in Orlando at time
n will be in Orlando at time n+1. Use this
and the other expected transition probabil-
ities to form the transition matrix A.
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Markov Chains

We will model this situation with a Markov Chain.

The historical data suggest that with a
probability of 0.6, a car in Orlando at time
n will be in Orlando at time n+1. Use this
and the other expected transition probabil-
ities to form the transition matrix A.

FROM:
Or Tm

T
O
:

T
m

O
r [

0.6
]

= A,
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We will model this situation with a Markov Chain.

The historical data suggest that with a
probability of 0.6, a car in Orlando at time
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and the other expected transition probabil-
ities to form the transition matrix A.

FROM:
Or Tm

T
O
:

T
m

O
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0.6 0.3
0.4 0.7

]

= A,

◮ Let on be the probability that a car is in Orlando on day n

◮ Let tn be the probability that a car is in Tampa on day n.

We can represent the distribution of cars at time n with the vector

~xn =

[

on
tn

]

.
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We will model this situation with a Markov Chain.

The historical data suggest that with a
probability of 0.6, a car in Orlando at time
n will be in Orlando at time n+1. Use this
and the other expected transition probabil-
ities to form the transition matrix A.

FROM:
Or Tm

T
O
:

T
m

O
r [

0.6 0.3
0.4 0.7

]

= A,

◮ Let on be the probability that a car is in Orlando on day n

◮ Let tn be the probability that a car is in Tampa on day n.

We can represent the distribution of cars at time n with the vector

~xn =

[

on
tn

]

. And so, ~xn+1 =

[

on+1

tn+1

]

= A ·

[

on
tn

]

= A~xn.
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Markov Chains

We will model this situation with a Markov Chain.

The historical data suggest that with a
probability of 0.6, a car in Orlando at time
n will be in Orlando at time n+1. Use this
and the other expected transition probabil-
ities to form the transition matrix A.

FROM:
Or Tm

T
O
:

T
m

O
r [

0.6 0.3
0.4 0.7

]

= A,

◮ Let on be the probability that a car is in Orlando on day n

◮ Let tn be the probability that a car is in Tampa on day n.

We can represent the distribution of cars at time n with the vector

~xn =

[

on
tn

]

. And so, ~xn+1 =

[

on+1

tn+1

]

= A ·

[

on
tn

]

= A~xn.

Given an initial distribution ~x0 =

[

o0
t0

]

,

the expected distribution of cars at time n is ~xn = An~x0.
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Markov Chains

For example, if they company starts off with twice as many cars in

Orlando as in Tampa, then ~x0 =

[

2/3
1/3

]

, so we expect

~x1 =

[

0.6 0.3
0.4 0.7

] [

2/3
1/3

]

=

[ ]

.
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Markov Chains

For example, if they company starts off with twice as many cars in

Orlando as in Tampa, then ~x0 =

[

2/3
1/3

]

, so we expect

~x1 =

[

0.6 0.3
0.4 0.7

] [

2/3
1/3

]

=

[ ]

.

~x2 =

[

0.6 0.3
0.4 0.7

] [ ]

=

[ ]

.
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Markov Chains

For example, if they company starts off with twice as many cars in

Orlando as in Tampa, then ~x0 =

[

2/3
1/3

]

, so we expect

~x1 =

[

0.6 0.3
0.4 0.7

] [

2/3
1/3

]

=

[ ]

.

~x2 =

[

0.6 0.3
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] [ ]

=
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.
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How do we determine the expected distribution in the long run?
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Markov Chains

Definition: Given a Markov Chain with transition matrix A, an
equilibrium distribution is a vector ~xeq that satisfies A~xeq = ~xeq .
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[Linear Algebra: ~xeq is an eigenvector corresponding to λ = 1.]
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Markov Chains

Definition: Given a Markov Chain with transition matrix A, an
equilibrium distribution is a vector ~xeq that satisfies A~xeq = ~xeq .

[Linear Algebra: ~xeq is an eigenvector corresponding to λ = 1.]

In our example, the equilibrium distribution satisfies
[

0.6 0.3
0.4 0.7

] [

oeq
teq

]

=

[

oeq
teq

]

.
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Markov Chains

Definition: Given a Markov Chain with transition matrix A, an
equilibrium distribution is a vector ~xeq that satisfies A~xeq = ~xeq .

[Linear Algebra: ~xeq is an eigenvector corresponding to λ = 1.]

In our example, the equilibrium distribution satisfies
[

0.6 0.3
0.4 0.7

] [

oeq
teq

]

=

[

oeq
teq

]

.

So solve: 0.6oeq + 0.3teq = oeq and 0.4oeq + 0.7teq = teq .
Both equations reduce to 0.3teq = 0.4oeq , so oeq = 3

4
teq .
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4
teq .

Conclusion: If the company has 7000 cars in all, they would expect
that in the long run,
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Definition: Given a Markov Chain with transition matrix A, an
equilibrium distribution is a vector ~xeq that satisfies A~xeq = ~xeq .

[Linear Algebra: ~xeq is an eigenvector corresponding to λ = 1.]

In our example, the equilibrium distribution satisfies
[

0.6 0.3
0.4 0.7

] [

oeq
teq

]

=

[

oeq
teq

]

.

So solve: 0.6oeq + 0.3teq = oeq and 0.4oeq + 0.7teq = teq .
Both equations reduce to 0.3teq = 0.4oeq , so oeq = 3

4
teq .

Conclusion: If the company has 7000 cars in all, they would expect
that in the long run,

In Markov Chains: ⋆ The sum of the entries in every column of A is 1,
because the total probability of transitioning from state i is 1.
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Markov Chains

Definition: Given a Markov Chain with transition matrix A, an
equilibrium distribution is a vector ~xeq that satisfies A~xeq = ~xeq .

[Linear Algebra: ~xeq is an eigenvector corresponding to λ = 1.]

In our example, the equilibrium distribution satisfies
[

0.6 0.3
0.4 0.7

] [

oeq
teq

]

=

[

oeq
teq

]

.

So solve: 0.6oeq + 0.3teq = oeq and 0.4oeq + 0.7teq = teq .
Both equations reduce to 0.3teq = 0.4oeq , so oeq = 3

4
teq .

Conclusion: If the company has 7000 cars in all, they would expect
that in the long run,

In Markov Chains: ⋆ The sum of the entries in every column of A is 1,
because the total probability of transitioning from state i is 1.

⋆ There is no general rule for what the row sum will be.
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