The next few days

Goals: Understand function fitting, introduce Mathematica

Frame of reference:

- Formulation. Suppose the problem has been properly formulated.
- Problem statement is precise and clear.
- Dependent variable(s) and independent variable determined.
- Now we need a mathematical model; one type is a function.
- We collect data*, plot it, and notice a pattern. $y \approx C x^{k}$???
- Simplifying assumption: The independent variable is a (simple) function of the dependent variables.
- Math. Manipulation. Determine the best function of this type.
- Now: Visually. Later: Using a computer
- Evaluation. Does this function fit the data well?
\star For a real world question, there is more evaluation to do.

Functions you should recognize on sight

TWPS: What are these functions? What is the most general equation?

Springs and Elongations

Example: Modeling Spring Elongation
Take your favorite spring. Attach different masses. How much does it stretch from rest? [Its elongation.]

When we plot the data, we get the following scatterplot.

mass x	elong y
50	1.000
100	1.875
150	2.750
200	3.250
250	4.375
300	4.875
350	5.675
400	6.500
450	7.250
500	8.000
550	8.750

Proportionality

When data seems to lie on a line through the origin, we expect the two variables to be proportional; in this case, $y=k x$ for some constant k. We need to find this constant of proportionality k.

So: Estimate the slope of the line. How?
1 Guesstimating

2 Mathematically: Linear Regression / Least Squares
(For another day)

Fitting Gravity Data

Example. Modeling the dropping of a golf ball

Source: practicalphysics.org

Let's use an experiment to test the gravity model from last time.

Use a camera to record the position every tenth of a second.

Data would be similar to the table \rightarrow It's plotted in the scatterplot below.

t	y
0.0	0.00
0.1	0.25
0.2	0.75
0.3	1.50
0.4	2.50
0.5	4.00
0.6	5.75
0.7	7.75
0.8	10.25
0.9	13.00
1.0	16.00

[Ignore data on p. 25.]
[It's BAD data.]

Fitting Gravity Data

These data seem to fit a $\frac{}{\text { (type of function) }}$. How can we be sure?
1 Plot distance as a function of t^{2}.
Next, estimate the constant of proportionality.

Fitting Gravity Data

When fitting data to a function $y=C t^{k}$, an alternate method is:
2 * Plot the log of distance as a function of log of time. *

- WHY? Suppose $y=C t^{k}$. Taking a logarithm of both sides, $\ln y=\ln \left(C t^{k}\right)=$

Conclusion: To approximate C and k,

- First, calculate $\ln y$ and $\ln t$ for each datapoint.
- Fit the transformed data to a line.
- The slope is an approximation for k.
- The y-intercept approximates $\ln C$.

Fitting Gravity Data

We have determined that our gravity model

$$
y(t)=16 t^{2}
$$

appears to model the dropping of a golf ball.

Example. Raindrops-Our model gives their position as $y(t)=16 t^{2}$.
A raindrop falling from 1024 feet would land after $t=8$ seconds.
However, an experiment shows that the fastest drop takes 40 seconds, and that drops fall at different rates depending on their size.

Even if we have a good model for one situation doesn't mean it will apply everywhere. We always need to question our assumptions.
-Extensive gravity discussion in Section 1.3.-

Modeling Population Growth

Example. Modeling the size of a population.
We would like to build a simple model to predict the size of a population in 10 years.

- A very macro-level question.

Definitions: Let t be time in years; $t=0$ now. $P(t)=$ size of population at time t.
$B(t)=$ number of births between times t and $t+1$.
$D(t)=$ number of deaths between times t and $t+1$.

$$
\begin{aligned}
& \hline \begin{array}{c}
\text { Definitions } \\
\text { imply }
\end{array} \\
& P(4)= \\
& B\left(\frac{1}{2}\right)= \\
& B(5)-D(5) \\
& =
\end{aligned}
$$

Therefore, $P(t+1)=$ \qquad .

Assumption: The birth rate and death rate stay constant.
That is, the birth rate $b=\frac{B(t)}{P(t)}$ and death rate $d=\frac{D(t)}{P(t)}$ are constants.
Assumption: No migration.

Population Growth

Therefore,

$$
P(t+1)=P(t)\left[\frac{P(t)}{P(t)}+\frac{B(t)}{P(t)}-\frac{D(t)}{P(t)}\right] .
$$

Under our assumptions,

$$
P(t+1)=P(t)[1+b-d] .
$$

This implies: $P(1)=$ \qquad ,

$$
P(2)=
$$

\qquad , ..
In general, $P(n)=$ \qquad .

Definition. The growth rate of a population is $r=(1+b-d)$.
This constant is also called the Malthusian parameter.
A model for the size of a population is

$$
P(t)=P(0) r^{t}
$$

where $P(0)$ and r are constants.

Applying the Malthusian Model

Example 1. Suppose that the current US population is $315,400,000$. Assume that the birth rate is 0.02 and the death rate is 0.01 . What will the population be in 10 years?

Answer. Use $P(t)=P(0) r^{t}$:

Refinement. Approx. US Growth Rate at http://www63.wolframalpha.com/input/?i=US+birth+rate
Resource: Wolfram Alpha, integrable directly into Mathematica.
Example 2. How long will it take the population to double?
Answer. Use $P(t)=P(0) r^{t}$:

Determining constants of exponential growth

Goal: Given population data, determine model constants.

- Take the logarithm of both sides of $P(t)=P(0) r^{t}$.
- We have $\ln [P(t)]=$ \qquad .
- A linear fit for $P(t)$ vs. t gives values for \qquad and \qquad .
- Exponentiate each value to find the values for $P(0)$ and r.

Determining constants of exponential growth

Here we plot $\ln [P(t)]$ as a function of t :

The line of best fit is approximately $\ln [P(t)]=4.4+0.0135 t$.
Therefore our model says $P(t) \approx e^{4.4}\left(e^{0.0135}\right) t=81.5 \cdot(1.014)^{t}$.
Analysis: History indicates we should split the interval [1900, 1970].

- We have to be careful when trying to extrapolate!
* Important: Transformations distort distances between points, so verification of a fit should always take place on y versus x axes. *

Residuals

Once you determine a function of best fit, then you should verify that it fits well. One way to do this is to look at the residual plot.

Definition: Given a point $\left(x_{i}, y_{i}\right)$ and a function fit $f(x)$, the residual r_{i} is the error between the actual and predicted values.

Mathematically, $r_{i}=y_{i}-f\left(x_{i}\right)$.
Definition: A residual plot is a plot of the points $\left(x_{i}, r_{i}\right)$.

Data Plot with Function Fit

Residuals Shown

Residuals

The structure of the points in the residual plot give clues about whether the function fits the data well. Three common appearances:

1 Random: Residuals are randomly scattered at a consistent distance from axis. Indicates a good fit, as on previous page.
2 Curvilinear: Residuals appear to follow a pattern. Indicates that some aspect of model behavior is not taken into account.
3 Fanning: Residuals small at first and get larger (or vice versa). Indicates non-constant variability (model better for small x ?).

Random

Curvilinear

Fanning

Interpolation vs. Extrapolation

Suppose you have collected a set of known data points $\left(x_{i}, y_{i}\right)$, and you would like to estimate the y-value for an unknown x-value. The name for such an estimation depends on the placement of the x-value relative to the known x-values.

Interpolation

Inserting one or more x-values between known x-values.

Extrapolation

Inserting one or more x-values outside of the range of known x-values.

Interpolation vs. Extrapolation

- The most common method for interpolation is taking a weighted average of the two nearest data points; suppose $x_{1}<x<x_{2}$, then,

$$
f(x) \approx y_{1}+\frac{y_{2}-y_{1}}{x_{2}-x_{2}}\left(x-x_{1}\right) .
$$

- In both interpolation and extrapolation, when you have a function f that is a good fit to the data, simply plug in $y=f(x)$.
- Confidence in approximated values depends on confidence in your data and your model.
- Confidence in extrapolated data is higher when closer to the range of known x-values.

Extrapolation: Running the Mile (p. 162)

Below is a plot of the years in which a record was broken for running a mile and the record-breaking time.

The data appears to fit the line $T(t)=15.5639-0.00593323 t$.
Solve for $T(t)=0$: You get $t \approx 2623$.
Conclusion: In the year 2623, the record will be zero minutes!

- Note the lack of realistic assumptions behind the data.
- Always be careful when you extrapolate!

