Deterministic versus Probabilistic

Deterministic: All data is known beforehand

Probabilistic: Element of chance is involved

Deterministic versus Probabilistic

Deterministic: All data is known beforehand

- Once you start the system, you know exactly what is going to happen.
- Example. Predicting the amount of money in a bank account.
- If you know the initial deposit, and the interest rate, then:
- You can determine the amount in the account after one year.

Probabilistic: Element of chance is involved

Deterministic versus Probabilistic

Deterministic: All data is known beforehand

- Once you start the system, you know exactly what is going to happen.
- Example. Predicting the amount of money in a bank account.
- If you know the initial deposit, and the interest rate, then:
- You can determine the amount in the account after one year.

Probabilistic: Element of chance is involved

- You know the likelihood that something will happen, but you don't know when it will happen.
- Example. Roll a die until it comes up '5'.
- Know that in each roll, a ' 5 ' will come up with probability $1 / 6$.
- Don't know exactly when, but we can predict well.

Basic Probability

Definition: An experiment is any process whose outcome is uncertain.
Definition: The set of all possible outcomes of an experiment is called the sample space, denoted X or S.
Definition: Each outcome $x \in X$ has a number between 0 and 1 that measures its likelihood of occurring. This is the probability of x, denoted $p(x)$.
Example. Rolling a die is an experiment; the sample space is $\{\ldots \quad\}$. The individual probabilities are all $p(i)=$ \qquad

Basic Probability

Definition: An experiment is any process whose outcome is uncertain.
Definition: The set of all possible outcomes of an experiment is called the sample space, denoted X or S.
Definition: Each outcome $x \in X$ has a number between 0 and 1 that measures its likelihood of occurring. This is the probability of x, denoted $p(x)$.
Example. Rolling a die is an experiment; the sample space is $\{\ldots \quad\}$. The individual probabilities are all $p(i)=$ \qquad .

Definition: An event E is something that happens (in other words, a subset of the sample space).
Definition: Given E, the probability of the event $(p(E))$ is the sum of the probabilities of the outcomes making up the event.

Example. The roll of the die ... [is ' 5 '] or [is odd] or [is prime] ... Example. $p\left(E_{1}\right)=$ $p\left(E_{2}\right)=$ \qquad
\qquad .

Determining Probabilities

Three methods for determining the probability of an occurrence:

- Relative frequency method:
- Equal probability method:
- Subjective guess method:

Determining Probabilities

Three methods for determining the probability of an occurrence:

- Relative frequency method: Repeat an experiment many times; assign as the probability the fraction $\frac{\text { occurrences }}{\# \text { experiments run }}$. Example. Hit a bulls-eye 17 times out of 100; set the probability of hitting a bulls-eye to be p (bulls-eye $)=0.17$.
- Equal probability method:
- Subjective guess method:

Determining Probabilities

Three methods for determining the probability of an occurrence:

- Relative frequency method: Repeat an experiment many times; assign as the probability the fraction $\frac{\text { occurrences }}{\text { \# experiments run }}$. Example. Hit a bulls-eye 17 times out of 100 ; set the probability of hitting a bulls-eye to be p (bulls-eye) $=0.17$.
- Equal probability method: Assume all outcomes have equal probability; assign as the probability $\frac{1}{\# \text { of possible outcomes }}$. Example. Each side of a dodecahedral die is equally likely to appear; decide to set $p(1)=\frac{1}{12}$.
- Subjective guess method:

Determining Probabilities

Three methods for determining the probability of an occurrence:

- Relative frequency method: Repeat an experiment many times; assign as the probability the fraction $\frac{\text { occurrences }}{\text { \# experiments run }}$. Example. Hit a bulls-eye 17 times out of 100 ; set the probability of hitting a bulls-eye to be p (bulls-eye) $=0.17$.
- Equal probability method: Assume all outcomes have equal probability; assign as the probability $\frac{1}{\# \text { of possible outcomes }}$. Example. Each side of a dodecahedral die is equally likely to appear; decide to set $p(1)=\frac{1}{12}$.
- Subjective guess method: If neither method above applies, give it your best guess.
Example. How likely is it that your friend will come to a party?

Independent Events

Definition: Two events are independent if the probabilities of occurrence do not depend on one another.

Example. Roll a red die and a blue die.

- Event 1: blue die rolls a 1. Event 2: red die rolls a 6. These events are independent.
- Event 1: blue die rolls a 1. Event 2: blue die rolls a 6. These events are dependent.

Independent Events

Definition: Two events are independent if the probabilities of occurrence do not depend on one another.

Example. Roll a red die and a blue die.

- Event 1: blue die rolls a 1. Event 2: red die rolls a 6. These events are independent.
- Event 1: blue die rolls a 1. Event 2: blue die rolls a 6. These events are dependent.
Example. Pick a card, any card! Shuffle a deck of 52 cards.
- Event 1: Pick a first card. Event 2: Pick a second card. These events are \qquad .

Independent Events

Definition: Two events are independent if the probabilities of occurrence do not depend on one another.

Example. Roll a red die and a blue die.

- Event 1: blue die rolls a 1. Event 2: red die rolls a 6. These events are independent.
- Event 1: blue die rolls a 1. Event 2: blue die rolls a 6. These events are dependent.
Example. Pick a card, any card! Shuffle a deck of 52 cards.
- Event 1: Pick a first card. Event 2: Pick a second card. These events are \qquad .
Example. You wake up and don't know what day it is.
- Event 1: Today is a weekday.
E_{1} vs. E_{2}
- Event 2: Today is cloudy.
E_{2} vs. E_{3}
- Event 3: Today is Modeling day.
E_{1} vs. E_{3}

Independent Events

- When events E_{1} (in X_{1}) and E_{2} (in X_{2}) are independent events,

$$
p\left(E_{1} \text { and } E_{2}\right)=p\left(E_{1}\right) p\left(E_{2}\right)
$$

Example. What is the probability that today is a cloudy weekday?

Independent Events

- When events E_{1} (in X_{1}) and E_{2} (in X_{2}) are independent events,

$$
p\left(E_{1} \text { and } E_{2}\right)=p\left(E_{1}\right) p\left(E_{2}\right)
$$

Example. What is the probability that today is a cloudy weekday?

- When events E_{1} (in X_{1}) and E_{2} (in X_{2}) are independent events,

$$
p\left(E_{1} \text { or } E_{2}\right)
$$

Proof: Venn diagram / rectangle

Independent Events

- When events E_{1} (in X_{1}) and E_{2} (in X_{2}) are independent events,

$$
p\left(E_{1} \text { and } E_{2}\right)=p\left(E_{1}\right) p\left(E_{2}\right)
$$

Example. What is the probability that today is a cloudy weekday?

- When events E_{1} (in X_{1}) and E_{2} (in X_{2}) are independent events,

$$
\begin{aligned}
p\left(E_{1} \text { or } E_{2}\right) & =1-\left(1-P\left(E_{1}\right)\right)\left(1-P\left(E_{2}\right)\right) \\
& =P\left(E_{1}\right)+P\left(E_{2}\right)-p\left(E_{1}\right) p\left(E_{2}\right)
\end{aligned}
$$

Proof: Venn diagram / rectangle

Independent Events

- When events E_{1} (in X_{1}) and E_{2} (in X_{2}) are independent events,

$$
p\left(E_{1} \text { and } E_{2}\right)=p\left(E_{1}\right) p\left(E_{2}\right)
$$

Example. What is the probability that today is a cloudy weekday?

- When events E_{1} (in X_{1}) and E_{2} (in X_{2}) are independent events,

$$
\begin{aligned}
p\left(E_{1} \text { or } E_{2}\right) & =1-\left(1-P\left(E_{1}\right)\right)\left(1-P\left(E_{2}\right)\right) \\
& =P\left(E_{1}\right)+P\left(E_{2}\right)-p\left(E_{1}\right) p\left(E_{2}\right)
\end{aligned}
$$

Proof: Venn diagram / rectangle

Example. What is the probability that you roll a blue 1 OR a red 6 ?
This does not work with dependent events.

Decision Trees

Definition: A multistage experiment is one in which each stage is a simpler experiment. They can be represented using a tree diagram.

Each branch of the tree represents one outcome x of that level's experiment, and is labeled by $p(x)$.

Decision Trees

Definition: A multistage experiment is one in which each stage is a simpler experiment. They can be represented using a tree diagram.

Each branch of the tree represents one outcome x of that level's experiment, and is labeled by $p(x)$.

Example. Flipping a biased coin twice.

Independent or dependent?

Decision Trees

Definition: A multistage experiment is one in which each stage is a simpler experiment. They can be represented using a tree diagram.

Each branch of the tree represents one outcome x of that level's experiment, and is labeled by $p(x)$.

Example. Flipping a biased coin twice.

Independent or dependent?

Example. Indiana and SF State U. play two soccer games. (p. 382)

Independent or dependent?

Expected value / mean

"Even with the randomness, what do you expect to happen?"

Expected value / mean

"Even with the randomness, what do you expect to happen?"
Suppose that each outcome in a sample space has a number $r(x)$ attached to it. (examples: number of pips on a die, amount of money you win on a bet, inches of precipitation falling)
This function r is called a random variable.

Expected value / mean

"Even with the randomness, what do you expect to happen?"
Suppose that each outcome in a sample space has a number $r(x)$ attached to it. (examples: number of pips on a die, amount of money you win on a bet, inches of precipitation falling)
This function r is called a random variable.
Definition: The expected value or mean of a random variable is the sum of the numbers weighted by their probabilities. Mathematically,

$$
\mu=\mathbb{E}[X]=p\left(x_{1}\right) r\left(x_{1}\right)+p\left(x_{2}\right) r\left(x_{2}\right)+\cdots+p\left(x_{n}\right) r\left(x_{n}\right) .
$$

Idea: With probability $p\left(x_{1}\right)$, there is a contribution of $r\left(x_{1}\right)$, etc.
Example. How many heads would you expect on average when flipping a biased coin twice?

Expected value / mean

"Even with the randomness, what do you expect to happen?" Suppose that each outcome in a sample space has a number $r(x)$ attached to it. (examples: number of pips on a die, amount of money you win on a bet, inches of precipitation falling)
This function r is called a random variable.
Definition: The expected value or mean of a random variable is the sum of the numbers weighted by their probabilities. Mathematically,

$$
\mu=\mathbb{E}[X]=p\left(x_{1}\right) r\left(x_{1}\right)+p\left(x_{2}\right) r\left(x_{2}\right)+\cdots+p\left(x_{n}\right) r\left(x_{n}\right) .
$$

Idea: With probability $p\left(x_{1}\right)$, there is a contribution of $r\left(x_{1}\right)$, etc.
Example. How many heads would you expect on average when flipping a biased coin twice?

Example. How many wins do you expect Indiana to have?

Expected value / mean

When two random variables are on two independent experiments, the expected value operation behaves nicely:

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \text { and } \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

Expected value / mean

When two random variables are on two independent experiments, the expected value operation behaves nicely:

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \text { and } \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

Example. We throw a red die and a blue die. What is the expected value of the sum of the dice and the product of the dice?

Expected value / mean

When two random variables are on two independent experiments, the expected value operation behaves nicely:

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \text { and } \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

Example. We throw a red die and a blue die. What is the expected value of the sum of the dice and the product of the dice?

$b+^{r}$	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

b^{*}	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

Expected value / mean

When two random variables are on two independent experiments, the expected value operation behaves nicely:

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \text { and } \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

Example. We throw a red die and a blue die. What is the expected value of the sum of the dice and the product of the dice?

b^{r}	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

b^{r}	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

$\mathbb{E}[X+Y]=$
$\mathbb{E}[X Y]=$

Component Reliability

Many systems consist of components pieced together. To determine how reliable the system is, determine how reliable each component is and apply probability rules.

Definition: The reliability of a system is its probability of success.
Example. Launch the space shuttle into space with a three-stage rocket.

$$
\text { Stage } 1 \rightarrow \text { Stage } 2 \rightarrow \text { Stage } 3
$$

* In order for the rocket to launch, \qquad \star

Component Reliability

Many systems consist of components pieced together. To determine how reliable the system is, determine how reliable each component is and apply probability rules.
Definition: The reliability of a system is its probability of success.
Example. Launch the space shuttle into space with a three-stage rocket.

$$
\text { Stage } 1 \rightarrow \text { Stage } 2 \rightarrow \text { Stage } 3
$$

* In order for the rocket to launch, \qquad *

Let $R_{1}=90 \%, R_{2}=95 \%, R_{3}=96 \%$ be the reliabilities of Stages $1-3$.
$p($ system success $)=p(\mathrm{~S} 1$ success and S 2 success and S 3 success $)$

Component Reliability

Example. Communicating with the space shuttle. There are two independent methods in which earth can communicate with the space shuttle

- A microwave radio with reliability $R_{1}=0.95$
- An FM radio, with reliability $R_{2}=0.96$.
* In order to be able to communicate with the shuttle,

Component Reliability

Example. Communicating with the space shuttle. There are two independent methods in which earth can communicate with the space shuttle

- A microwave radio with reliability $R_{1}=0.95$
- An FM radio, with reliability $R_{2}=0.96$.
* In order to be able to communicate with the shuttle,
p (system success) $=p$ (MW radio success or FM radio success)

