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� Once you start the system, you know exactly what is going to
happen.

� Example. Predicting the amount of money in a bank account.

� If you know the initial deposit, and the interest rate, then:
� You can determine the amount in the account after one year.

Probabilistic: Element of chance is involved
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Deterministic versus Probabilistic

Deterministic: All data is known beforehand

� Once you start the system, you know exactly what is going to
happen.

� Example. Predicting the amount of money in a bank account.

� If you know the initial deposit, and the interest rate, then:
� You can determine the amount in the account after one year.

Probabilistic: Element of chance is involved

� You know the likelihood that something will happen, but you
don’t know when it will happen.

� Example. Roll a die until it comes up ‘5’.

� Know that in each roll, a ‘5’ will come up with probability 1/6.
� Don’t know exactly when, but we can predict well.
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Basic Probability

Definition: An experiment is any process whose outcome is uncertain.

Definition: The set of all possible outcomes of an experiment is
called the sample space, denoted X or S .

Definition: Each outcome x ∈ X has a number between 0 and 1
that measures its likelihood of occurring. This is the probability of
x , denoted p(x).

Example. Rolling a die is an experiment; the sample space is
{ }. The individual probabilities are all p(i) = .
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Basic Probability

Definition: An experiment is any process whose outcome is uncertain.

Definition: The set of all possible outcomes of an experiment is
called the sample space, denoted X or S .

Definition: Each outcome x ∈ X has a number between 0 and 1
that measures its likelihood of occurring. This is the probability of
x , denoted p(x).

Example. Rolling a die is an experiment; the sample space is
{ }. The individual probabilities are all p(i) = .

Definition: An event E is something that happens
(in other words, a subset of the sample space).

Definition: Given E , the probability of the event (p(E )) is the
sum of the probabilities of the outcomes making up the event.

Example. The roll of the die . . . [is ‘5’] or [is odd] or [is prime] . . .

Example. p(E1) = , p(E2) = , p(E3) = .
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Determining Probabilities

Three methods for determining the probability of an occurrence:

� Relative frequency method:

� Equal probability method:

� Subjective guess method:
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times; assign as the probability the fraction occurrences
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Example. Hit a bulls-eye 17 times out of 100; set the
probability of hitting a bulls-eye to be p(bulls-eye) = 0.17.

� Equal probability method:
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probability of hitting a bulls-eye to be p(bulls-eye) = 0.17.
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Example. Each side of a dodecahedral die is equally likely to
appear; decide to set p(1) = 1
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Determining Probabilities

Three methods for determining the probability of an occurrence:

� Relative frequency method: Repeat an experiment many
times; assign as the probability the fraction occurrences

# experiments run .

Example. Hit a bulls-eye 17 times out of 100; set the
probability of hitting a bulls-eye to be p(bulls-eye) = 0.17.

� Equal probability method: Assume all outcomes have
equal probability; assign as the probability 1

# of possible outcomes .

Example. Each side of a dodecahedral die is equally likely to
appear; decide to set p(1) = 1

12 .

� Subjective guess method: If neither method above applies,
give it your best guess.

Example. How likely is it that your friend will come to a party?
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Independent Events

Definition: Two events are independent if the probabilities of
occurrence do not depend on one another.

Example. Roll a red die and a blue die.

� Event 1: blue die rolls a 1. Event 2: red die rolls a 6.
These events are independent.

� Event 1: blue die rolls a 1. Event 2: blue die rolls a 6.
These events are dependent.
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Definition: Two events are independent if the probabilities of
occurrence do not depend on one another.

Example. Roll a red die and a blue die.

� Event 1: blue die rolls a 1. Event 2: red die rolls a 6.
These events are independent.

� Event 1: blue die rolls a 1. Event 2: blue die rolls a 6.
These events are dependent.

Example. Pick a card, any card! Shuffle a deck of 52 cards.

� Event 1: Pick a first card. Event 2: Pick a second card.
These events are .
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Independent Events

Definition: Two events are independent if the probabilities of
occurrence do not depend on one another.

Example. Roll a red die and a blue die.

� Event 1: blue die rolls a 1. Event 2: red die rolls a 6.
These events are independent.

� Event 1: blue die rolls a 1. Event 2: blue die rolls a 6.
These events are dependent.

Example. Pick a card, any card! Shuffle a deck of 52 cards.

� Event 1: Pick a first card. Event 2: Pick a second card.
These events are .

Example. You wake up and don’t know what day it is.

� Event 1: Today is a weekday. E1 vs. E2

� Event 2: Today is cloudy. E2 vs. E3

� Event 3: Today is Modeling day. E1 vs. E3
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Independent Events

� When events E1 (in X1) and E2 (in X2) are independent events,

p(E1 and E2) = p(E1)p(E2).

Example. What is the probability that today is a cloudy weekday?
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Example. What is the probability that today is a cloudy weekday?

� When events E1 (in X1) and E2 (in X2) are independent events,

p(E1 or E2)

Proof: Venn diagram / rectangle
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Independent Events

� When events E1 (in X1) and E2 (in X2) are independent events,

p(E1 and E2) = p(E1)p(E2).

Example. What is the probability that today is a cloudy weekday?

� When events E1 (in X1) and E2 (in X2) are independent events,

p(E1 or E2) = 1 − (1 − P(E1))(1 − P(E2))

= P(E1) + P(E2) − p(E1)p(E2)

Proof: Venn diagram / rectangle
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Independent Events

� When events E1 (in X1) and E2 (in X2) are independent events,

p(E1 and E2) = p(E1)p(E2).

Example. What is the probability that today is a cloudy weekday?

� When events E1 (in X1) and E2 (in X2) are independent events,

p(E1 or E2) = 1 − (1 − P(E1))(1 − P(E2))

= P(E1) + P(E2) − p(E1)p(E2)

Proof: Venn diagram / rectangle

Example. What is the probability that you roll a blue 1 OR a red 6?

This does not work with dependent events.
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Decision Trees

Definition: A multistage experiment is one in which each stage is a
simpler experiment. They can be represented using a tree diagram.

Each branch of the tree represents one outcome x of that level’s
experiment, and is labeled by p(x).
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Decision Trees

Definition: A multistage experiment is one in which each stage is a
simpler experiment. They can be represented using a tree diagram.

Each branch of the tree represents one outcome x of that level’s
experiment, and is labeled by p(x).

Example. Flipping a biased coin
twice.

H2/3
HH → 4

9
2/3

HT → 2
91/3

T1/3
TH → 2

9
2/3

TT → 1
91/3

Independent or dependent?
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Decision Trees

Definition: A multistage experiment is one in which each stage is a
simpler experiment. They can be represented using a tree diagram.

Each branch of the tree represents one outcome x of that level’s
experiment, and is labeled by p(x).

Example. Flipping a biased coin
twice.

H2/3
HH → 4

9
2/3

HT → 2
91/3

T1/3
TH → 2

9
2/3

TT → 1
91/3

Independent or dependent?

Example. Indiana and SF State U.
play two soccer games. (p. 382)

1: Ind1
2

2: Ind → 3
8

3/4

2: SF → 1
81/4

1: SF
1
2

2: Ind → 1
6

1/3

2: SF → 1
32/3

Independent or dependent?
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Expected value / mean

“Even with the randomness, what do you expect to happen?”
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“Even with the randomness, what do you expect to happen?”

Suppose that each outcome in a sample space has a number r(x)
attached to it. (examples: number of pips on a die, amount of
money you win on a bet, inches of precipitation falling)

This function r is called a random variable.
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“Even with the randomness, what do you expect to happen?”

Suppose that each outcome in a sample space has a number r(x)
attached to it. (examples: number of pips on a die, amount of
money you win on a bet, inches of precipitation falling)

This function r is called a random variable.

Definition: The expected value or mean of a random variable is the
sum of the numbers weighted by their probabilities. Mathematically,

µ = E[X ] = p(x1)r(x1) + p(x2)r(x2) + · · · + p(xn)r(xn).

Idea: With probability p(x1), there is a contribution of r(x1), etc.

Example. How many heads would you expect on average when
flipping a biased coin twice?
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Expected value / mean

“Even with the randomness, what do you expect to happen?”

Suppose that each outcome in a sample space has a number r(x)
attached to it. (examples: number of pips on a die, amount of
money you win on a bet, inches of precipitation falling)

This function r is called a random variable.

Definition: The expected value or mean of a random variable is the
sum of the numbers weighted by their probabilities. Mathematically,

µ = E[X ] = p(x1)r(x1) + p(x2)r(x2) + · · · + p(xn)r(xn).

Idea: With probability p(x1), there is a contribution of r(x1), etc.

Example. How many heads would you expect on average when
flipping a biased coin twice?

Example. How many wins do you expect Indiana to have?
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Expected value / mean

When two random variables are on two independent experiments,
the expected value operation behaves nicely:

E[X + Y ] = E[X ] + E[Y ] and E[XY ] = E[X ]E[Y ].
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When two random variables are on two independent experiments,
the expected value operation behaves nicely:

E[X + Y ] = E[X ] + E[Y ] and E[XY ] = E[X ]E[Y ].

Example. We throw a red die and a blue die. What is the expected
value of the sum of the dice and the product of the dice?
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Expected value / mean

When two random variables are on two independent experiments,
the expected value operation behaves nicely:

E[X + Y ] = E[X ] + E[Y ] and E[XY ] = E[X ]E[Y ].

Example. We throw a red die and a blue die. What is the expected
value of the sum of the dice and the product of the dice?

b+
r 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

b∗r 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36
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Expected value / mean

When two random variables are on two independent experiments,
the expected value operation behaves nicely:

E[X + Y ] = E[X ] + E[Y ] and E[XY ] = E[X ]E[Y ].

Example. We throw a red die and a blue die. What is the expected
value of the sum of the dice and the product of the dice?

b+
r 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

b∗r 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

E[X + Y ] =

E[XY ] =
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Component Reliability

Many systems consist of components pieced together. To determine
how reliable the system is, determine how reliable each component
is and apply probability rules.

Definition: The reliability of a system is its probability of success.

Example. Launch the space shuttle into space with a three-stage
rocket.

Stage 1 → Stage 2 → Stage 3

� In order for the rocket to launch, �
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Component Reliability

Many systems consist of components pieced together. To determine
how reliable the system is, determine how reliable each component
is and apply probability rules.

Definition: The reliability of a system is its probability of success.

Example. Launch the space shuttle into space with a three-stage
rocket.

Stage 1 → Stage 2 → Stage 3

� In order for the rocket to launch, �

Let R1 = 90%, R2 = 95%, R3 = 96% be the reliabilities of Stages 1–3.

p(system success) = p(S1 success and S2 success and S3 success)
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Component Reliability

Example. Communicating with the space shuttle.
There are two independent methods in which earth can
communicate with the space shuttle

� A microwave radio with reliability R1 = 0.95

� An FM radio, with reliability R2 = 0.96.

� In order to be able to communicate with the shuttle,
.
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Component Reliability

Example. Communicating with the space shuttle.
There are two independent methods in which earth can
communicate with the space shuttle

� A microwave radio with reliability R1 = 0.95

� An FM radio, with reliability R2 = 0.96.

� In order to be able to communicate with the shuttle,
.

p(system success) = p(MW radio success or FM radio success)


