
Advanced Random Simulation — §5.1 89

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

Advanced Random Simulation — §5.1 89

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

◮ First, Mathematica evaluates the ‘condition’.

◮ If ‘condition’ is true, the statement evaluates to ‘t’.

◮ If ‘condition’ is false, the statement evaluates to ‘f’.

Advanced Random Simulation — §5.1 89

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

◮ First, Mathematica evaluates the ‘condition’.

◮ If ‘condition’ is true, the statement evaluates to ‘t’.

◮ If ‘condition’ is false, the statement evaluates to ‘f’.

Examples of conditions:

x<0 (x==0) && (y!=1) RandomInteger[]==1

Note the double equals sign == and not equals !=.

Advanced Random Simulation — §5.1 89

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

◮ First, Mathematica evaluates the ‘condition’.

◮ If ‘condition’ is true, the statement evaluates to ‘t’.

◮ If ‘condition’ is false, the statement evaluates to ‘f’.

Examples of conditions:

x<0 (x==0) && (y!=1) RandomInteger[]==1

Note the double equals sign == and not equals !=.

Examples.

◮ If[x<0, -x, x] is the absolute value function. Why?

Advanced Random Simulation — §5.1 89

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

◮ First, Mathematica evaluates the ‘condition’.

◮ If ‘condition’ is true, the statement evaluates to ‘t’.

◮ If ‘condition’ is false, the statement evaluates to ‘f’.

Examples of conditions:

x<0 (x==0) && (y!=1) RandomInteger[]==1

Note the double equals sign == and not equals !=.

Examples.

◮ If[x<0, -x, x] is the absolute value function. Why?

◮ If[RandomInteger[] == 1, "Head", "Tail"]

gives “Head” half the time and gives “Tail” half the time.

Advanced Random Simulation — §5.1 90

Using If statements in Table commands

Goal: Model a 7.5% chance of occurrence.
Recall that RandomReal[] outputs a random number between 0 and 1.
To model a 7.5% chance of occurrence, split the interval at .

0 1

Advanced Random Simulation — §5.1 90

Using If statements in Table commands

Goal: Model a 7.5% chance of occurrence.
Recall that RandomReal[] outputs a random number between 0 and 1.
To model a 7.5% chance of occurrence, split the interval at .

0 1
.075

Anything to the left of the split will be taken as success.

Advanced Random Simulation — §5.1 90

Using If statements in Table commands

Goal: Model a 7.5% chance of occurrence.
Recall that RandomReal[] outputs a random number between 0 and 1.
To model a 7.5% chance of occurrence, split the interval at .

0 1
.075

Anything to the left of the split will be taken as success.

To model this is Mathematica, use an If statement.
trial = RandomReal[]

success = If[trial <= 0.075, 1, 0]

Advanced Random Simulation — §5.1 90

Using If statements in Table commands

Goal: Model a 7.5% chance of occurrence.
Recall that RandomReal[] outputs a random number between 0 and 1.
To model a 7.5% chance of occurrence, split the interval at .

0 1
.075

Anything to the left of the split will be taken as success.

To model this is Mathematica, use an If statement.
trial = RandomReal[]

success = If[trial <= 0.075, 1, 0]

Alternatively, do this is one step:
If[RandomReal[] <= 0.075, 1, 0]

Advanced Random Simulation — §5.1 91

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Advanced Random Simulation — §5.1 91

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Advanced Random Simulation — §5.1 91

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

Advanced Random Simulation — §5.1 91

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

◮ If we add the entries Total[trials], we get # successes.
One time I ran it had 32 successes.

Advanced Random Simulation — §5.1 91

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

◮ If we add the entries Total[trials], we get # successes.
One time I ran it had 32 successes.

◮ Alternatively, Tally[trials] gives how many times
distinct entries appear. Output: {{0, 468}, {1, 32}}

Advanced Random Simulation — §5.1 91

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials=Table[If[RandomReal[] <= 0.075, 1, 0],{500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

◮ If we add the entries Total[trials], we get # successes.
One time I ran it had 32 successes.

◮ Alternatively, Tally[trials] gives how many times
distinct entries appear. Output: {{0, 468}, {1, 32}}

◮ Last, we might want a visualization;
Use Histogram[trials] to get:

0.5 1.0 1.5 2.0

100

200

300

400

500

Advanced Random Simulation — §5.1 92

If statements and For loops

For[start,test,incr,body]

Advanced Random Simulation — §5.1 92

If statements and For loops

For[start,test,incr,body]

◮ First, Mathematica evaluates the code in start.

◮ As long as test is true, (Can happen many times!)

◮ Continue to evaluate body and do the increment incr.

Advanced Random Simulation — §5.1 92

If statements and For loops

For[start,test,incr,body]

◮ First, Mathematica evaluates the code in start.

◮ As long as test is true, (Can happen many times!)

◮ Continue to evaluate body and do the increment incr.

Example. For[i = 0, i < 4, i++, Print[i]]

◮ First, Mathematica defines i to be equal to 0.

◮ Next, it checks to see if i is less than 4.

◮ It is, so it evaluates Print[i], and increments i by 1 (i++).

Advanced Random Simulation — §5.1 92

If statements and For loops

For[start,test,incr,body]

◮ First, Mathematica evaluates the code in start.

◮ As long as test is true, (Can happen many times!)

◮ Continue to evaluate body and do the increment incr.

Example. For[i = 0, i < 4, i++, Print[i]]

◮ First, Mathematica defines i to be equal to 0.

◮ Next, it checks to see if i is less than 4.

◮ It is, so it evaluates Print[i], and increments i by 1 (i++).

◮ Now i = 1, which is still < 4. So ‘Print[i]’ is evaluated and
i is incremented. Similarly for i = 2 and i = 3. Now i is
incremented to 4, which is NOT < 4, and the loop terminates.

Advanced Random Simulation — §5.1 92

If statements and For loops

For[start,test,incr,body]

◮ First, Mathematica evaluates the code in start.

◮ As long as test is true, (Can happen many times!)

◮ Continue to evaluate body and do the increment incr.

Example. For[i = 0, i < 4, i++, Print[i]]

◮ First, Mathematica defines i to be equal to 0.

◮ Next, it checks to see if i is less than 4.

◮ It is, so it evaluates Print[i], and increments i by 1 (i++).

◮ Now i = 1, which is still < 4. So ‘Print[i]’ is evaluated and
i is incremented. Similarly for i = 2 and i = 3. Now i is
incremented to 4, which is NOT < 4, and the loop terminates.

This variable i is called a counter.
Be careful to name counters wisely! They are defined as variables.

Advanced Random Simulation — §5.1 93

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

Advanced Random Simulation — §5.1 93

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

◮ Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

◮ Each time the loop evaluates,
◮ Generate a random integer between 0 and 1.
◮ If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

Advanced Random Simulation — §5.1 93

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

◮ Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

◮ Each time the loop evaluates,
◮ Generate a random integer between 0 and 1.
◮ If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

For[loopCount = 1, loopCount <= 20, loopCount++,

flip = RandomInteger[];

If[flip == 1, Print["Head"], Print["Tail"]]]

Advanced Random Simulation — §5.1 93

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

◮ Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

◮ Each time the loop evaluates,
◮ Generate a random integer between 0 and 1.
◮ If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

For[loopCount = 1, loopCount <= 20, loopCount++,

flip = RandomInteger[];

If[flip == 1, Print["Head"], Print["Tail"]]]

◮ Notice the == and also the ; that separates the commands.

Advanced Random Simulation — §5.1 93

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

◮ Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

◮ Each time the loop evaluates,
◮ Generate a random integer between 0 and 1.
◮ If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

For[loopCount = 1, loopCount <= 20, loopCount++,

flip = RandomInteger[];

If[flip == 1, Print["Head"], Print["Tail"]]]

◮ Notice the == and also the ; that separates the commands.

◮ loopCount is ONLY a counter; it does not change each step’s
evaluation.

Advanced Random Simulation — §5.1 94

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

Advanced Random Simulation — §5.1 94

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

◮ Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
◮ Run the loop 20 times by having loopCount vary from 1 to 20.
◮ Each time the loop evaluates,

◮ Generate a random integer between 0 and 1.
◮ If ‘1’, output ‘Head’ AND

◮ If ‘0’, output ‘Tail’ AND

Advanced Random Simulation — §5.1 94

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

◮ Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
◮ Run the loop 20 times by having loopCount vary from 1 to 20.
◮ Each time the loop evaluates,

◮ Generate a random integer between 0 and 1.
◮ If ‘1’, output ‘Head’ AND increase ‘headCount’,
◮ If ‘0’, output ‘Tail’ AND increase ‘tailCount’.

Advanced Random Simulation — §5.1 94

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

◮ Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
◮ Run the loop 20 times by having loopCount vary from 1 to 20.
◮ Each time the loop evaluates,

◮ Generate a random integer between 0 and 1.
◮ If ‘1’, output ‘Head’ AND increase ‘headCount’,
◮ If ‘0’, output ‘Tail’ AND increase ‘tailCount’.

◮ After 20 iterations, display ‘headCount’ and ‘tailCount’.

Advanced Random Simulation — §5.1 94

Simulating flipping a coin

Pimp my code! Let’s keep track of how many heads and tails are
thrown by introducing new counters. headCount will keep track of the
number of heads and tailCount will keep track of the number of tails.

◮ Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
◮ Run the loop 20 times by having loopCount vary from 1 to 20.
◮ Each time the loop evaluates,

◮ Generate a random integer between 0 and 1.
◮ If ‘1’, output ‘Head’ AND increase ‘headCount’,
◮ If ‘0’, output ‘Tail’ AND increase ‘tailCount’.

◮ After 20 iterations, display ‘headCount’ and ‘tailCount’.

headCount=0; tailCount=0;

For[loopCount = 1, loopCount <= 20, loopCount++,

If[RandomInteger[]==1,

Print["Head"]; headCount++, ← Notice the ‘;’
Print["Tail"]; tailCount++]] ← Notice the ‘++’

{headCount, tailCount}

Advanced Random Simulation — §5.1 95

Simulating rolling a biased die

Suppose you have a four-sided die, where the four sides (A, B, C,
and D) come up with probabilities 1/2, 1/4, 1/8, and 1/8, respectively.

0 1

Advanced Random Simulation — §5.1 95

Simulating rolling a biased die

Suppose you have a four-sided die, where the four sides (A, B, C,
and D) come up with probabilities 1/2, 1/4, 1/8, and 1/8, respectively.

A B C D

0 11�2 3�4 7�8

Advanced Random Simulation — §5.1 95

Simulating rolling a biased die

Suppose you have a four-sided die, where the four sides (A, B, C,
and D) come up with probabilities 1/2, 1/4, 1/8, and 1/8, respectively.

A B C D

0 11�2 3�4 7�8

◮ Reset the counters: ‘aCount=bCount=cCount=dCount=0’.

◮ For loopCount from 1 to 20,
◮ Generate a random real number between 0 and 1.
◮ If between 0 and 1/2, then output ‘A’ and aCount++

if between 1/2 and 3/4, then output ‘B’ and bCount++
if between 3/4 and 7/8, then output ‘C’ and cCount++
if between 7/8 and 1, then output ’D’ and dCount++

◮ Display ‘aCount’, ‘bCount’, ‘cCount’, and ‘dCount’.

Advanced Random Simulation — §5.1 96

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

Advanced Random Simulation — §5.1 96

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

◮ Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

Advanced Random Simulation — §5.1 96

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

◮ Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

◮ These If statements all have no “False” part. (; vs ,)

Advanced Random Simulation — §5.1 96

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

◮ Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

◮ These If statements all have no “False” part. (; vs ,)
◮ Important: You MUST set a variable for the roll. Otherwise,

calling RandomInteger four times will have you comparing
different random numbers in each If statement.

Advanced Random Simulation — §5.1 96

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

◮ Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

◮ These If statements all have no “False” part. (; vs ,)
◮ Important: You MUST set a variable for the roll. Otherwise,

calling RandomInteger four times will have you comparing
different random numbers in each If statement.

◮ If you are feeling fancy, you can use one Which command
instead of four If commands.

Advanced Random Simulation — §5.1 97

Using Simulation to Calculate Area

Suppose you have a region whose area you don’t know. You can
approximate the area using a Monte Carlo simulation.

Idea: Surround the region by a rectangle. Randomly chosen points
in the rectangle will fall in the region with probability

(area of region)/(area of rectangle)

We can approximate this probability by calculating

(points falling in region)/(total points chosen).

Advanced Random Simulation — §5.1 98

Using Simulation to Calculate Area

Example. What is the area under the curve sin(x) from 0 to π?

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Randomly select 100 points from the rectangle [0, π] × [0, 1].

[Choose a random real between 0 and π for the x-coordinate

and a random real between 0 and 1 for the y-coordinate. . .]

Then,
Area of region

≈
Number of points in region

100
.

Advanced Random Simulation — §5.1 98

Using Simulation to Calculate Area

Example. What is the area under the curve sin(x) from 0 to π?

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Randomly select 100 points from the rectangle [0, π] × [0, 1].

[Choose a random real between 0 and π for the x-coordinate

and a random real between 0 and 1 for the y-coordinate. . .]

Then,
Area of region

≈
Number of points in region

100
.

Here, 63 points fell in the region; we estimate the area to be .

Compare this to the actual value,
∫

x=π

x=0
sin(x) dx = [− cos(x)]x=π

x=0
= 2

	Advanced Random Simulation --- §5.1

