Modeling: Start to Finish

Example. Vehicular Stopping Distance
Background: Back when you took driver's training, you learned a rule for how far behind other cars you are supposed to stay.

- Stay back one car length for every 10 mph of speed.
- Use the two-second rule: stay two seconds behind.

This is an easy-to-follow rule; it is a safe rule?
State the question:
1 Does the two-second rule fit the 10 mph rule?
2 Does the two-second rule mean we'll stop in time?
3 Determine the total stopping distance of a car as a function of its speed.

Identify factors:
Stopping distance is a function of what?

Breaking down the problem

Describe mathematically and do mathematical manipulations:

Subproblem 1:

Determine reaction distance
Assume speed is constant throughout reaction distance. Then total reaction distance is $d_{r}=t_{r} \cdot v$.

Subproblem 2:

Determine stopping distance
Assume brakes applied constantly throughout stopping, producing a constant deceleration.

Brake force is $F=m a$, applied over a breaking distance d_{b}.

This energy absorbs the kinetic energy of the car, $\frac{1}{2} m v$.

Solve $m \cdot a \cdot d_{b}=\frac{1}{2} m v^{2}$ to find that we expect $d_{b}=C \cdot v^{2}$.

Total stopping distance is therefore $d_{r}+d_{b}$.

Model verification

Model Evaluation:

- Did we answer the question?
- Can we gather data?
- Does it make sense?
- If so, collect data in order to find the constants.

Data is available from US Bureau of Public Roads. (Fig. 2.14)
The data lie perfectly (!) on a line. $d_{r} \approx 1.1 v$.

- Examine methodology of data collection.
- Experimenters said $t_{r}=3 / 4 \mathrm{sec}$ and calculated d_{r} !
- Perhaps we should design our own trial?

Model verification

- Data for braking distance is a range.
- Trials ran until had a large enough sample
- Then middle 85\% of the trials given.
- We're modeling d_{b} as a function of v^{2}, so transform the x-axis.
- Do we try to fit to low value, avg value, or high value in range?
- Goal: prevent accidents!

Consider the line in Figure 2.15:

$$
d_{b}=0.054 v^{2}
$$

Up to 60 mph , line seems like reasonable it.

- Conclusion: $d_{\text {tot }}=d_{r}+d_{b}=1.1 v+0.054 v^{2}$.
- Check fit by comparing plots of observed stopping distance and model's predicted stopping distance (Fig. 2.16)

Decide model is reasonable at least until 70 mph .

Limitations and assumptions inherent in our model:

When is our model reasonable?

- Drivers going $\leq 70 \mathrm{mph}$
- Good road conditions
- Driving car, not truck
- Current car manufacturing

Implement the model

- Come up with a good rule of thumb for drivers to follow (Next slide!)
- Publicize it

Maintain the model

- Revise every five years
- In the future, perhaps there will be no accidents!

Vehicular Stopping Distance

What about that two-second rule?

- Easy to implement.
- Two-second rule is a linear rule,
- A quadratic rule would make more sense.
- Works up until 40 mph , then quickly invalid! (Fig 2.17)

Come up with a variable rule based on speed.

- It's not reasonable to tell people to stay 2.5 seconds behind at 50 mph and 2.8 seconds behind at 58 mph !
- Determine speed ranges where
- two seconds is enough ($\leq 40 \mathrm{mph}$)
- three seconds enough ($\leq 60 \mathrm{mph}$)
- four seconds enough ($\leq 75 \mathrm{mph}$)
- And more if non-ideal road conditions.

