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Price – Demand Curve (p. 111–114)

Example. A company is trying to determine how demand for a
new product depends on its price and collect the following data:

price p $9 $10 $11

demand d 1200/mo. 1000/mo. 975/mo.

The company has reason to believe that price and demand are
inversely proportional, that is, d = c

p
for some constant c .

→ Use the method of least squares to determine this constant c .
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Price – Demand Curve (p. 111–114)

Solution. Since f (p) =
c

p
, then the sum S =

∑

(pi ,di )

[

di −

(

c

pi

)]2

.

Specifying datapoints gives

S =

[

1200 −

c

9

]2

+

[

1000 −

c

10

]2

+

[

975 −

c

11

]2

Setting the derivative equal to zero gives

dS

dc
=

−2

9

[

1200 −

c

9

]

+
−2

10

[

1000 −

c

10

]

+
−2

11

[

975 −

c

11

]

= 0

Solving for c gives c ≈ 10517.
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New York City Temperature (similar to p. 158)
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Weekly Average Temperature in NYCThe graph of average weekly temperature in
New York City from Jan. 2006 to Dec. 2008
gives the distinct impression of a .

We need to determine the constants in:

Temp(t) = A + B sin(C (t − D)).

Let’s simplify our model to only determine amplitude B and
vertical shift A. We must make assumptions about C

and D. We can assume that C = .

For D, find when the sine passes through zero.
Since January is cold and July is hot, the
zero should occur in April; guess D ≈

4
12 .

Fitting to Temp(t) = A + B sin[t − 4
12 ]

gives: Temp(t) = 13.9 + 11.8 sin[t − 4
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Interpolation vs. Extrapolation

Suppose you have collected a set of known data points (xi , yi ),
and you would like to estimate the y -value for an unknown x-value.

The name for such an estimation depends on the placement of the
x-value relative to the known x-values.

Interpolation

Inserting one or more x-values
between known x-values.
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Extrapolation

Inserting one or more x-values
outside of the range of known
x-values.

10 11 12 13 14 15
Age HyearsL

54

56

58

60

62

64

Height HinchesL
Height of your sister Susie Q



Interpolation and Extrapolation — §2.3.4 and §3.2 35

Interpolation vs. Extrapolation

◮ The most common method for interpolation is taking a weighted
average of the two nearest data points; suppose x1 < x < x2,
then,

f (x) ≈ y1 +
y2 − y1

x2 − x2
(x − x1).

◮ In both interpolation and extrapolation, when you have a
function f that is a good fit to the data, simply plug in y = f (x).

◮ Confidence in approximated values depend on confidence in
your data and your model.

◮ Confidence in extrapolated data higher when closer to the
range of known x-values.
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Extrapolation: Running the Mile (p. 162)

Below is a plot of the years in which a record was broken for
running a mile and the record-breaking time.
The data appears to fit a line; running least-squares gives

T (t) = 15.5639 − 0.00593323t
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Solving for T(t)=0 gives t ≈ 2623.

Conclusion: in the year 2623, the record will be zero minutes!

◮ Note the lack of descriptive realism.

◮ Always be careful when you extrapolate!
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