Errors inherent to the modeling process

Models always have errors \rightsquigarrow

- Be aware of them.
- Understand and account for them!
- Include in model discussion.

Errors inherent to the modeling process

Models always have errors \rightsquigarrow

- Be aware of them.
- Understand and account for them!
- Include in model discussion.

Types of Errors
1 Formulation Errors occur when simplifications or assumptions are made. (\star)
2 Observation Errors occur during data collection. (\star)

Errors inherent to the modeling process

Models always have errors \rightsquigarrow

- Be aware of them.
- Understand and account for them!
- Include in model discussion.

Types of Errors
1 Formulation Errors occur when simplifications or assumptions are made. (\star)
2 Observation Errors occur during data collection. (\star)
3 Truncation Errors occur when you approximate an incalculable function.

4 Rounding Errors occur during calculations when your computing device can't keep track of exact numbers.

Errors inherent to the modeling process

1 Formulation Errors occur when simplifications or assumptions are made.

Example from the book, pp. 70-73: Seismology.
Set off an explosion at one place and measure it at another (dist. D). Create a model to determine the depth of a layer in the crust based on the time for the initial explosion to arrive T, and the second shock T^{\prime}.

$$
d=\frac{D}{2} \sqrt{\left(T^{\prime} / T\right)^{2}-1}
$$

Assumptions: The earth is flat, and the layer is parallel to the surface.

Errors inherent to the modeling process

1 Formulation Errors occur when simplifications or assumptions are made.

Example from the book, pp. 70-73: Seismology.
Set off an explosion at one place and measure it at another (dist. D). Create a model to determine the depth of a layer in the crust based on the time for the initial explosion to arrive T, and the second shock T^{\prime}.

$$
d=\frac{D}{2} \sqrt{\left(T^{\prime} / T\right)^{2}-1}
$$

Assumptions: The earth is flat, and the layer is parallel to the surface. If layers are not parallel (off by α°), the percent errors can be large!

α	1	5	10	30
$\%$ error in d	3.4	18	37	105

Errors inherent to the modeling process

2 Observation Errors occur during data collection.
Continuation of the previous example:
Even if the layers are parallel, perhaps our timing is inaccurate. Let's say that T is 1 second and T^{\prime} is 1.2 seconds, but that our timer is off by at most 1%.

Then T might be \qquad seconds or \qquad seconds, and T^{\prime} might be \qquad seconds or \qquad seconds.

Errors inherent to the modeling process

2 Observation Errors occur during data collection.
Continuation of the previous example:
Even if the layers are parallel, perhaps our timing is inaccurate. Let's say that T is 1 second and T^{\prime} is 1.2 seconds, but that our timer is off by at most 1%.

Then T might be ___ seconds or ___ seconds, and T^{\prime} might be ___ seconds or ____ seconds.

T	over	over	under	under
T^{\prime}	over	under	over	under
$\%$ error in d	-0.5%	-5%	$+6 \%$	0%

Errors inherent to the modeling process

2 Observation Errors occur during data collection.
Continuation of the previous example:
Even if the layers are parallel, perhaps our timing is inaccurate. Let's say that T is 1 second and T^{\prime} is 1.2 seconds, but that our timer is off by at most 1%.

Then T might be ___ seconds or ___ seconds, and T^{\prime} might be ___ seconds or ____ seconds.

T	over	over	under	under
T^{\prime}	over	under	over	under
$\%$ error in d	-0.5%	-5%	$+6 \%$	0%

One way to decrease influence: measure many times, take average.

Errors inherent to the modeling process

3 Truncation Errors occur when you approximate an incalculable function.
Question: When is $x^{5}+x-1=0$? What is $\sin 1$? Numerically?
Answer: Use a Taylor series approximation;

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

Errors inherent to the modeling process

3 Truncation Errors occur when you approximate an incalculable function.
Question: When is $x^{5}+x-1=0$? What is $\sin 1$? Numerically?
Answer: Use a Taylor series approximation;

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

4 Rounding Errors occur during calculations when your computing device can't keep track of exact numbers.
Question: What is 1.2300001^{10} ?
Answer: If we only have three-digit accuracy, then
$1.23 \cdot 1.23=1.51$,
$1.23 \cdot 1.51=1.86$
$1.23^{10}=7.95$

Errors inherent to the modeling process

3 Truncation Errors occur when you approximate an incalculable function.
Question: When is $x^{5}+x-1=0$? What is $\sin 1$? Numerically?
Answer: Use a Taylor series approximation;

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

4 Rounding Errors occur during calculations when your computing device can't keep track of exact numbers.
Question: What is 1.2300001^{10} ?
Answer: If we only have three-digit accuracy, then
$1.23 \cdot 1.23=1.51, \quad 1.23 \cdot 1.51=1.86 \quad \ldots \quad 1.23^{10}=7.95$
$1.2300001 \cdot 1.2300001=1.5129002$,
$1.2300001 \cdot 1.5129002=1.8608674$,
$1.2300001^{10}=7.9259523$
True answer: $7.925952539912863452584748018737649320039805 \ldots$

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and probabilistic models.
Example. Determine the best elevator delivery scheme.

- The wait is too long, too many stops along the way.

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and probabilistic models.
Example. Determine the best elevator delivery scheme.

- The wait is too long, too many stops along the way.
- Inconvenient to experiment with alternate delivery schemes.
- Disrupt normal service
- Take surveys of customers
- Confuse regular customers

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and probabilistic models.

Example. Determine the best elevator delivery scheme.

- The wait is too long, too many stops along the way.
- Inconvenient to experiment with alternate delivery schemes.
- Disrupt normal service
- Take surveys of customers
- Confuse regular customers
- Alternatively, run a computer simulation. Write a computer program that models the system of elevators, including:
- Time of arrival of passengers (a random event)
- Passenger destination (a random event)
- Capacity of elevator (fixed by system)
- Speed of elevator (fixed by system)
- Current delivery scheme

Simulation Modeling

Once you have written the computer program,
Verify that the simulation models the current real-world situation

- Run the model many times.
- Have the computer keep track of data, such as average wait time, number of stops it takes, longest queue, etc.

Then, modify various parameters in order to simulate a new delivery scheme.

- How do the data change?
- Is the alternate scheme better or worse?
- Determine how to implement to cause minimal disruption.

Monte Carlo Simulations

Definition: A simulation that incorporates an element of randomness is called a Monte Carlo simulation.

PROS:

CONS:

Monte Carlo Simulations

Definition: A simulation that incorporates an element of randomness is called a Monte Carlo simulation.

PROS:

- It is a relatively easy method to approximate complex systems.

CONS:

Monte Carlo Simulations

Definition: A simulation that incorporates an element of randomness is called a Monte Carlo simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering-easy to do sensitivity analysis.

CONS:

Monte Carlo Simulations

Definition: A simulation that incorporates an element of randomness is called a Monte Carlo simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering-easy to do sensitivity analysis.
- It can model systems over difficult-to-measure time frames.

CONS:

Monte Carlo Simulations

Definition: A simulation that incorporates an element of randomness is called a Monte Carlo simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering-easy to do sensitivity analysis.
- It can model systems over difficult-to-measure time frames.

CONS:

- You have to build it. (Expensive to develop!)
- Requires computing power and time.

Monte Carlo Simulations

Definition: A simulation that incorporates an element of randomness is called a Monte Carlo simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering-easy to do sensitivity analysis.
- It can model systems over difficult-to-measure time frames.

CONS:

- You have to build it. (Expensive to develop!)
- Requires computing power and time.
- Makes you over-confident in the results.

Monte Carlo Simulations

Definition: A simulation that incorporates an element of randomness is called a Monte Carlo simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering-easy to do sensitivity analysis.
- It can model systems over difficult-to-measure time frames.

CONS:

- You have to build it. (Expensive to develop!)
- Requires computing power and time.
- Makes you over-confident in the results.
- Dealing with probability, so results will always be of the form: "With 95\% probability, the wait time will be less than 2 minutes."

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
To simulate a random event, use one of the Mathematica commands:

- RandomInteger gives a pseudo-random integer.
- RandomReal gives a pseudo-random real number.

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
To simulate a random event, use one of the Mathematica commands:

- RandomInteger gives a pseudo-random integer.
- RandomInteger[] (no input) gives either 0 or 1 .
- RandomInteger [5] gives an integer from 0 to 5 .
- RandomInteger $[\{1,10\}]$ gives an integer from 1 to 10 .
- RandomReal gives a pseudo-random real number.

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
To simulate a random event, use one of the Mathematica commands:

- RandomInteger gives a pseudo-random integer.
- RandomInteger[] (no input) gives either 0 or 1 .
- RandomInteger [5] gives an integer from 0 to 5.
- RandomInteger $[\{1,10\}]$ gives an integer from 1 to 10 .
- RandomInteger $[\{1,10\}, 20]$ gives a list of 20 such integers.
- RandomReal gives a pseudo-random real number.

The first input gives the range; a second input tells how many to make.

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
To simulate a random event, use one of the Mathematica commands:

- RandomInteger gives a pseudo-random integer.
- RandomInteger [] (no input) gives either 0 or 1.
- RandomInteger [5] gives an integer from 0 to 5 .
- RandomInteger $[\{1,10\}]$ gives an integer from 1 to 10 .
- RandomInteger $[\{1,10\}, 20]$ gives a list of 20 such integers.
- RandomReal gives a pseudo-random real number.
- RandomReal[] (no input) gives a real number between 0 or 1.
- RandomReal[\{0.1, 0.2\}] gives a real number from 0.1 to 0.2 .

The first input gives the range; a second input tells how many to make.

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
To simulate a random event, use one of the Mathematica commands:

- RandomInteger gives a pseudo-random integer.
- RandomInteger [] (no input) gives either 0 or 1.
- RandomInteger [5] gives an integer from 0 to 5 .
- RandomInteger $[\{1,10\}]$ gives an integer from 1 to 10 .
- RandomInteger $[\{1,10\}, 20]$ gives a list of 20 such integers.
- RandomReal gives a pseudo-random real number.
- RandomReal[] (no input) gives a real number between 0 or 1.
- RandomReal [\{0.1, 0.2\}] gives a real number from 0.1 to 0.2 .
- RandomReal $[\{0.1,0.2\}, 15]$ gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
To simulate a random event, use one of the Mathematica commands:

- RandomInteger gives a pseudo-random integer.
- RandomInteger [] (no input) gives either 0 or 1 .
- RandomInteger [5] gives an integer from 0 to 5 .
- RandomInteger $[\{1,10\}]$ gives an integer from 1 to 10 .
- RandomInteger $[\{1,10\}, 20]$ gives a list of 20 such integers.
- RandomReal gives a pseudo-random real number.
- RandomReal[] (no input) gives a real number between 0 or 1.
- RandomReal [\{0.1, 0.2\}] gives a real number from 0.1 to 0.2 .
- RandomReal[\{0.1, 0.2\},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.
The numbers produced by a random number generator are never truly random because they are produced by an algorithm on a deterministic machine.

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
Let's use the convention: $1=$ 'Head' and $0=$ 'Tail'.

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times. Let's use the convention: $1=$ 'Head' and $0=$ 'Tail'. Then evaluating RandomInteger $[1,20]$ will generate a list of 20 coin tosses.

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
Let's use the convention: $1=$ 'Head' and $0=$ 'Tail'. Then evaluating RandomInteger $[1,20]$ will generate a list of 20 coin tosses.
$\ln [1]:$ CoinFlips $=$ RandomInteger $[1,20]$
$\operatorname{Out}[1]:\{1,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,1,1,1\}$

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.
Let's use the convention: $1=$ 'Head' and $0=$ 'Tail'. Then evaluating RandomInteger $[1,20]$ will generate a list of 20 coin tosses.
$\operatorname{In}[1]$: CoinFlips $=$ RandomInteger [1,20]
Out[1]: $\{1,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,1,1,1\}$
The sum of this list is the total number of heads tossed.

In[2]: Total [CoinFlips]
Out[2]: 13

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times. Let's use the convention: $1=$ 'Head' and $0=$ 'Tail'. Then evaluating RandomInteger $[1,20]$ will generate a list of 20 coin tosses.
$\operatorname{In}[1]$: CoinFlips $=$ RandomInteger [1,20]
Out[1]: $\{1,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,1,1,1\}$
The sum of this list is the total number of heads tossed.

In[2]: Total [CoinFlips]
Out[2]: 13
Running the commands again will simulate another trial of 20 flips.

