
Errors inherent to the modeling process — §2.1–2.2 80

Errors inherent to the modeling process

Models always have errors �
� Be aware of them.

� Understand and account for them!

� Include in model discussion.



Errors inherent to the modeling process — §2.1–2.2 80

Errors inherent to the modeling process

Models always have errors �
� Be aware of them.

� Understand and account for them!

� Include in model discussion.

Types of Errors

1 Formulation Errors occur when simplifications or
assumptions are made. (�)

2 Observation Errors occur during data collection. (�)



Errors inherent to the modeling process — §2.1–2.2 80

Errors inherent to the modeling process

Models always have errors �
� Be aware of them.

� Understand and account for them!

� Include in model discussion.

Types of Errors

1 Formulation Errors occur when simplifications or
assumptions are made. (�)

2 Observation Errors occur during data collection. (�)

3 Truncation Errors occur when you approximate an
incalculable function.

4 Rounding Errors occur during calculations when your
computing device can’t keep track of exact numbers.



Errors inherent to the modeling process — §2.1–2.2 81

Errors inherent to the modeling process

1 Formulation Errors occur when simplifications or
assumptions are made.

Example from the book, pp. 70–73: Seismology.

Set off an explosion at one place and measure it at another (dist. D).
Create a model to determine the depth of a layer in the crust based on
the time for the initial explosion to arrive T , and the second shock T ′.

d =
D

2

√
(T ′/T )2 − 1

Assumptions: The earth is flat, and the layer is parallel to the surface.



Errors inherent to the modeling process — §2.1–2.2 81

Errors inherent to the modeling process

1 Formulation Errors occur when simplifications or
assumptions are made.

Example from the book, pp. 70–73: Seismology.

Set off an explosion at one place and measure it at another (dist. D).
Create a model to determine the depth of a layer in the crust based on
the time for the initial explosion to arrive T , and the second shock T ′.

d =
D

2

√
(T ′/T )2 − 1

Assumptions: The earth is flat, and the layer is parallel to the surface.

If layers are not parallel (off by α◦), the percent errors can be large!

α 1 5 10 30

% error in d 3.4 18 37 105



Errors inherent to the modeling process — §2.1–2.2 82

Errors inherent to the modeling process

2 Observation Errors occur during data collection.

Continuation of the previous example:

Even if the layers are parallel, perhaps our timing is inaccurate.
Let’s say that T is 1 second and T ′ is 1.2 seconds,
but that our timer is off by at most 1%.

Then T might be seconds or seconds,
and T ′ might be seconds or seconds.



Errors inherent to the modeling process — §2.1–2.2 82

Errors inherent to the modeling process

2 Observation Errors occur during data collection.

Continuation of the previous example:

Even if the layers are parallel, perhaps our timing is inaccurate.
Let’s say that T is 1 second and T ′ is 1.2 seconds,
but that our timer is off by at most 1%.

Then T might be seconds or seconds,
and T ′ might be seconds or seconds.

T over over under under

T ′ over under over under

% error in d -0.5% -5% +6% 0%



Errors inherent to the modeling process — §2.1–2.2 82

Errors inherent to the modeling process

2 Observation Errors occur during data collection.

Continuation of the previous example:

Even if the layers are parallel, perhaps our timing is inaccurate.
Let’s say that T is 1 second and T ′ is 1.2 seconds,
but that our timer is off by at most 1%.

Then T might be seconds or seconds,
and T ′ might be seconds or seconds.

T over over under under

T ′ over under over under

% error in d -0.5% -5% +6% 0%

One way to decrease influence: measure many times, take average.



Errors inherent to the modeling process — §2.1–2.2 83

Errors inherent to the modeling process

3 Truncation Errors occur when you approximate an
incalculable function.

Question: When is x5 + x − 1 = 0? What is sin 1? Numerically?

Answer: Use a Taylor series approximation:

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · .



Errors inherent to the modeling process — §2.1–2.2 83

Errors inherent to the modeling process

3 Truncation Errors occur when you approximate an
incalculable function.

Question: When is x5 + x − 1 = 0? What is sin 1? Numerically?

Answer: Use a Taylor series approximation:

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · .

4 Rounding Errors occur during calculations when your
computing device can’t keep track of exact numbers.

Question: What is 1.230000110?

Answer: If we only have three-digit accuracy, then
1.23 · 1.23 = 1.51, 1.23 · 1.51 = 1.86 . . . 1.2310 = 7.95



Errors inherent to the modeling process — §2.1–2.2 83

Errors inherent to the modeling process

3 Truncation Errors occur when you approximate an
incalculable function.

Question: When is x5 + x − 1 = 0? What is sin 1? Numerically?

Answer: Use a Taylor series approximation:

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · .

4 Rounding Errors occur during calculations when your
computing device can’t keep track of exact numbers.

Question: What is 1.230000110?

Answer: If we only have three-digit accuracy, then
1.23 · 1.23 = 1.51, 1.23 · 1.51 = 1.86 . . . 1.2310 = 7.95
1.2300001 · 1.2300001 = 1.5129002,
1.2300001 · 1.5129002 = 1.8608674,
1.230000110 = 7.9259523
True answer: 7.925952539912863452584748018737649320039805 · · ·



Random Simulation — §5.1 84

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and
probabilistic models.

Example. Determine the best elevator delivery scheme.

� The wait is too long, too many stops along the way.



Random Simulation — §5.1 84

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and
probabilistic models.

Example. Determine the best elevator delivery scheme.

� The wait is too long, too many stops along the way.

� Inconvenient to experiment with alternate delivery schemes.

� Disrupt normal service
� Take surveys of customers
� Confuse regular customers



Random Simulation — §5.1 84

Simulation Modeling

Goal: Use probabilistic methods to analyze deterministic and
probabilistic models.

Example. Determine the best elevator delivery scheme.

� The wait is too long, too many stops along the way.

� Inconvenient to experiment with alternate delivery schemes.

� Disrupt normal service
� Take surveys of customers
� Confuse regular customers

� Alternatively, run a computer simulation. Write a computer
program that models the system of elevators, including:

� Time of arrival of passengers (a random event)
� Passenger destination (a random event)
� Capacity of elevator (fixed by system)
� Speed of elevator (fixed by system)
� Current delivery scheme



Random Simulation — §5.1 85

Simulation Modeling

Once you have written the computer program,

Verify that the simulation models the current real-world situation

� Run the model many times.

� Have the computer keep track of data, such as average wait
time, number of stops it takes, longest queue, etc.

Then, modify various parameters in order to simulate a new
delivery scheme.

� How do the data change?

� Is the alternate scheme better or worse?

� Determine how to implement to cause minimal disruption.



Random Simulation — §5.1 86

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

CONS:



Random Simulation — §5.1 86

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

� It is a relatively easy method to approximate complex systems.

CONS:



Random Simulation — §5.1 86

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

� It is a relatively easy method to approximate complex systems.

� Once built, it allows for tinkering—easy to do sensitivity analysis.

CONS:



Random Simulation — §5.1 86

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

� It is a relatively easy method to approximate complex systems.

� Once built, it allows for tinkering—easy to do sensitivity analysis.

� It can model systems over difficult-to-measure time frames.

CONS:



Random Simulation — §5.1 86

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

� It is a relatively easy method to approximate complex systems.

� Once built, it allows for tinkering—easy to do sensitivity analysis.

� It can model systems over difficult-to-measure time frames.

CONS:

� You have to build it. (Expensive to develop!)

� Requires computing power and time.



Random Simulation — §5.1 86

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

� It is a relatively easy method to approximate complex systems.

� Once built, it allows for tinkering—easy to do sensitivity analysis.

� It can model systems over difficult-to-measure time frames.

CONS:

� You have to build it. (Expensive to develop!)

� Requires computing power and time.

� Makes you over-confident in the results.



Random Simulation — §5.1 86

Monte Carlo Simulations

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

PROS:

� It is a relatively easy method to approximate complex systems.

� Once built, it allows for tinkering—easy to do sensitivity analysis.

� It can model systems over difficult-to-measure time frames.

CONS:

� You have to build it. (Expensive to develop!)

� Requires computing power and time.

� Makes you over-confident in the results.

� Dealing with probability, so results will always be of the form:
“With 95% probability, the wait time will be less than 2 minutes.”



Random Simulation — §5.1 87

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

� RandomInteger gives a pseudo-random integer.

� RandomReal gives a pseudo-random real number.



Random Simulation — §5.1 87

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

� RandomInteger gives a pseudo-random integer.
� RandomInteger[] (no input) gives either 0 or 1.
� RandomInteger[5] gives an integer from 0 to 5.
� RandomInteger[{1, 10}] gives an integer from 1 to 10.

� RandomReal gives a pseudo-random real number.



Random Simulation — §5.1 87

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

� RandomInteger gives a pseudo-random integer.
� RandomInteger[] (no input) gives either 0 or 1.
� RandomInteger[5] gives an integer from 0 to 5.
� RandomInteger[{1, 10}] gives an integer from 1 to 10.
� RandomInteger[{1, 10},20] gives a list of 20 such integers.

� RandomReal gives a pseudo-random real number.

The first input gives the range; a second input tells how many to make.



Random Simulation — §5.1 87

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

� RandomInteger gives a pseudo-random integer.
� RandomInteger[] (no input) gives either 0 or 1.
� RandomInteger[5] gives an integer from 0 to 5.
� RandomInteger[{1, 10}] gives an integer from 1 to 10.
� RandomInteger[{1, 10},20] gives a list of 20 such integers.

� RandomReal gives a pseudo-random real number.
� RandomReal[] (no input) gives a real number between 0 or 1.
� RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.

The first input gives the range; a second input tells how many to make.



Random Simulation — §5.1 87

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

� RandomInteger gives a pseudo-random integer.
� RandomInteger[] (no input) gives either 0 or 1.
� RandomInteger[5] gives an integer from 0 to 5.
� RandomInteger[{1, 10}] gives an integer from 1 to 10.
� RandomInteger[{1, 10},20] gives a list of 20 such integers.

� RandomReal gives a pseudo-random real number.
� RandomReal[] (no input) gives a real number between 0 or 1.
� RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.
� RandomReal[{0.1, 0.2},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.



Random Simulation — §5.1 87

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

� RandomInteger gives a pseudo-random integer.
� RandomInteger[] (no input) gives either 0 or 1.
� RandomInteger[5] gives an integer from 0 to 5.
� RandomInteger[{1, 10}] gives an integer from 1 to 10.
� RandomInteger[{1, 10},20] gives a list of 20 such integers.

� RandomReal gives a pseudo-random real number.
� RandomReal[] (no input) gives a real number between 0 or 1.
� RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.
� RandomReal[{0.1, 0.2},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.

The numbers produced by a random number generator are never
truly random because they are produced by an algorithm on a
deterministic machine.



Random Simulation — §5.1 88

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’.



Random Simulation — §5.1 88

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’. Then evaluating
RandomInteger[1,20] will generate a list of 20 coin tosses.



Random Simulation — §5.1 88

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’. Then evaluating
RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]
Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}



Random Simulation — §5.1 88

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’. Then evaluating
RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]
Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

The sum of this list is the total number of heads tossed.

In[2]: Total[CoinFlips]
Out[2]: 13



Random Simulation — §5.1 88

Simulating flipping a coin

Example. Get a computer to simulate flipping a fair coin 20 times.

Let’s use the convention: 1=‘Head’ and 0=‘Tail’. Then evaluating
RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]
Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

The sum of this list is the total number of heads tossed.

In[2]: Total[CoinFlips]
Out[2]: 13

Running the commands again will simulate another trial of 20 flips.


