Models always have errors \rightsquigarrow

- ▶ Be aware of them.
- ▶ Understand and account for them!
- Include in model discussion.

Models always have errors \rightsquigarrow

- Be aware of them.
- Understand and account for them!
- Include in model discussion.

Types of Errors

- Formulation Errors occur when simplifications or assumptions are made. (*)
- 2 Observation Errors occur during data collection. (*)

Models always have errors \rightsquigarrow

- Be aware of them.
- Understand and account for them!
- Include in model discussion.

Types of Errors

- Formulation Errors occur when simplifications or assumptions are made. (*)
- 2 Observation Errors occur during data collection. (*)
- **Truncation Errors** occur when you approximate an incalculable function.
- 4 Rounding Errors occur during calculations when your computing device can't keep track of exact numbers.

 Formulation Errors occur when simplifications or assumptions are made.

Example from the book, pp. 70–73: Seismology.

(

Set off an explosion at one place and measure it at another (dist. D). Create a model to determine the depth of a layer in the crust based on the time for the initial explosion to arrive T, and the second shock T'.

$$d = \frac{D}{2}\sqrt{(T'/T)^2 - 1}$$

Assumptions: The earth is flat, and the layer is parallel to the surface.

 Formulation Errors occur when simplifications or assumptions are made.

Example from the book, pp. 70–73: Seismology.

Set off an explosion at one place and measure it at another (dist. D). Create a model to determine the depth of a layer in the crust based on the time for the initial explosion to arrive T, and the second shock T'.

$$d=\frac{D}{2}\sqrt{(T'/T)^2-1}$$

Assumptions: The earth is flat, and the layer is parallel to the surface. If layers are not parallel (off by α°), the percent errors can be large!

α	1	5	10	30
% error in <i>d</i>	3.4	18	37	105

2 Observation Errors occur during data collection.

Continuation of the previous example:

Even if the layers are parallel, perhaps our timing is inaccurate. Let's say that T is 1 second and T' is 1.2 seconds, but that our timer is off by at most 1%.

Then T might be _____ seconds or _____ seconds, and T' might be _____ seconds or _____ seconds.

2 Observation Errors occur during data collection.

Continuation of the previous example:

Even if the layers are parallel, perhaps our timing is inaccurate. Let's say that T is 1 second and T' is 1.2 seconds, but that our timer is off by at most 1%.

Then T might be _____ seconds or _____ seconds, and T' might be _____ seconds or _____ seconds.

Т	over	over	under	under
Τ'	over	under	over	under
% error in <i>d</i>	-0.5%	-5%	+6%	0%

2 Observation Errors occur during data collection.

Continuation of the previous example:

Even if the layers are parallel, perhaps our timing is inaccurate. Let's say that T is 1 second and T' is 1.2 seconds, but that our timer is off by at most 1%.

Then T might be _____ seconds or _____ seconds, and T' might be _____ seconds or _____ seconds.

Т	over	over	under	under
Τ'	over	under	over	under
% error in <i>d</i>	-0.5%	-5%	+6%	0%

One way to decrease influence: measure many times, take average.

Truncation Errors occur when you approximate an incalculable function.

Question: When is $x^5 + x - 1 = 0$? What is sin 1? Numerically?

Answer: Use a Taylor series approximation:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^3}{5!} - \frac{x^7}{7!} + \cdots$$

Truncation Errors occur when you approximate an incalculable function.

Question: When is $x^5 + x - 1 = 0$? What is sin 1? Numerically?

Answer: Use a Taylor series approximation:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^3}{5!} - \frac{x^4}{7!} + \cdots$$

Rounding Errors occur during calculations when your computing device can't keep track of exact numbers. *Question:* What is 1.2300001¹⁰?

Answer: If we only have three-digit accuracy, then $1.23 \cdot 1.23 = 1.51$, $1.23 \cdot 1.51 = 1.86$... $1.23^{10} = 7.95$

Truncation Errors occur when you approximate an incalculable function.

Question: When is $x^5 + x - 1 = 0$? What is sin 1? Numerically?

Answer: Use a Taylor series approximation:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^3}{5!} - \frac{x'}{7!} + \cdots$$

Rounding Errors occur during calculations when your computing device can't keep track of exact numbers.
 Question: What is 1.2300001¹⁰?

Answer: If we only have three-digit accuracy, then $1.23 \cdot 1.23 = 1.51$, $1.23 \cdot 1.51 = 1.86$... $1.23^{10} = 7.95$ $1.2300001 \cdot 1.2300001 = 1.5129002$, $1.2300001 \cdot 1.5129002 = 1.8608674$, $1.2300001^{10} = 7.9259523$ True answer: 7.925952539912863452584748018737649320039805 ...

Goal: Use probabilistic methods to analyze deterministic and probabilistic models.

Example. Determine the best elevator delivery scheme.

▶ The wait is too long, too many stops along the way.

Goal: Use probabilistic methods to analyze deterministic and probabilistic models.

Example. Determine the best elevator delivery scheme.

- ▶ The wait is too long, too many stops along the way.
- ▶ *Inconvenient* to experiment with alternate delivery schemes.
 - Disrupt normal service
 - Take surveys of customers
 - Confuse regular customers

Goal: Use probabilistic methods to analyze deterministic and probabilistic models.

Example. Determine the best elevator delivery scheme.

- ▶ The wait is too long, too many stops along the way.
- ▶ *Inconvenient* to experiment with alternate delivery schemes.
 - Disrupt normal service
 - Take surveys of customers
 - Confuse regular customers
- Alternatively, run a computer simulation. Write a computer program that models the system of elevators, including:
 - Time of arrival of passengers (a random event)
 - Passenger destination (a random event)
 - Capacity of elevator (fixed by system)
 - Speed of elevator (fixed by system)
 - Current delivery scheme

Once you have written the computer program,

Verify that the simulation models the current real-world situation

- Run the model many times.
- Have the computer keep track of data, such as average wait time, number of stops it takes, longest queue, etc.

Then, modify various parameters in order to simulate a new delivery scheme.

- ▶ How do the data change?
- Is the alternate scheme better or worse?
- ▶ Determine how to implement to cause minimal disruption.

Definition: A simulation that incorporates an element of randomness is called a **Monte Carlo** simulation.

PROS:

Definition: A simulation that incorporates an element of randomness is called a **Monte Carlo** simulation.

PROS:

▶ It is a relatively easy method to approximate complex systems.

Definition: A simulation that incorporates an element of randomness is called a **Monte Carlo** simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering—easy to do sensitivity analysis.

Definition: A simulation that incorporates an element of randomness is called a **Monte Carlo** simulation.

PROS:

- ▶ It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering—easy to do sensitivity analysis.
- ▶ It can model systems over difficult-to-measure time frames.

Definition: A simulation that incorporates an element of randomness is called a **Monte Carlo** simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering—easy to do sensitivity analysis.
- ▶ It can model systems over difficult-to-measure time frames.

- You have to build it. (Expensive to develop!)
- Requires computing power and time.

Definition: A simulation that incorporates an element of randomness is called a **Monte Carlo** simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering—easy to do sensitivity analysis.
- It can model systems over difficult-to-measure time frames.

- You have to build it. (Expensive to develop!)
- Requires computing power and time.
- ▶ Makes you over-confident in the results.

Definition: A simulation that incorporates an element of randomness is called a **Monte Carlo** simulation.

PROS:

- It is a relatively easy method to approximate complex systems.
- Once built, it allows for tinkering—easy to do sensitivity analysis.
- It can model systems over difficult-to-measure time frames.

- You have to build it. (Expensive to develop!)
- Requires computing power and time.
- ▶ Makes you over-confident in the results.
- Dealing with probability, so results will always be of the form: "With 95% probability, the wait time will be less than 2 minutes."

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

▶ RandomInteger gives a pseudo-random *integer*.

▶ RandomReal gives a pseudo-random *real number*.

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the *Mathematica* commands:

- ▶ RandomInteger gives a pseudo-random *integer*.
 - RandomInteger[] (no input) gives either 0 or 1.
 - RandomInteger [5] gives an integer from 0 to 5.
 - ▶ RandomInteger[{1, 10}] gives an integer from 1 to 10.

▶ RandomReal gives a pseudo-random *real number*.

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the *Mathematica* commands:

▶ RandomInteger gives a pseudo-random *integer*.

- RandomInteger[] (no input) gives either 0 or 1.
- RandomInteger [5] gives an integer from 0 to 5.
- RandomInteger [{1, 10}] gives an integer from 1 to 10.
- ▶ RandomInteger [{1, 10},20] gives a list of 20 such integers.
- ▶ RandomReal gives a pseudo-random *real number*.

The first input gives the range; a second input tells how many to make.

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the *Mathematica* commands:

▶ RandomInteger gives a pseudo-random *integer*.

- RandomInteger[] (no input) gives either 0 or 1.
- RandomInteger [5] gives an integer from 0 to 5.
- RandomInteger [{1, 10}] gives an integer from 1 to 10.
- RandomInteger[{1, 10},20] gives a list of 20 such integers.
- ▶ RandomReal gives a pseudo-random *real number*.
 - RandomReal[] (no input) gives a real number between 0 or 1.
 - RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.

The first input gives the range; a second input tells how many to make.

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the Mathematica commands:

- ▶ RandomInteger gives a pseudo-random *integer*.
 - RandomInteger[] (no input) gives either 0 or 1.
 - RandomInteger [5] gives an integer from 0 to 5.
 - RandomInteger [{1, 10}] gives an integer from 1 to 10.
 - RandomInteger[{1, 10},20] gives a list of 20 such integers.
- RandomReal gives a pseudo-random real number.
 - RandomReal[] (no input) gives a real number between 0 or 1.
 - RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.
 - RandomReal[{0.1, 0.2},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.

Example. Get a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use one of the *Mathematica* commands:

- ▶ RandomInteger gives a pseudo-random *integer*.
 - RandomInteger[] (no input) gives either 0 or 1.
 - RandomInteger [5] gives an integer from 0 to 5.
 - RandomInteger [{1, 10}] gives an integer from 1 to 10.
 - RandomInteger[{1, 10},20] gives a list of 20 such integers.
- RandomReal gives a pseudo-random real number.
 - RandomReal[] (no input) gives a real number between 0 or 1.
 - RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.
 - RandomReal[{0.1, 0.2},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.

The numbers produced by a random number generator are never truly random because they are produced by an algorithm on a deterministic machine.

Example. Get a computer to simulate flipping a fair coin 20 times.

Let's use the convention: 1='Head' and 0='Tail'.

Example. Get a computer to simulate flipping a fair coin 20 times.

Let's use the convention: 1='Head' and 0='Tail'. Then evaluating RandomInteger[1,20] will generate a list of 20 coin tosses.

Example. Get a computer to simulate flipping a fair coin 20 times.

Let's use the convention: 1='Head' and 0='Tail'. Then evaluating RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]
Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

Example. Get a computer to simulate flipping a fair coin 20 times.

Let's use the convention: 1='Head' and 0='Tail'. Then evaluating RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]
Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

The sum of this list is the total number of heads tossed.

```
In[2]: Total[CoinFlips]
Out[2]: 13
```

Example. Get a computer to simulate flipping a fair coin 20 times.

Let's use the convention: 1='Head' and 0='Tail'. Then evaluating RandomInteger[1,20] will generate a list of 20 coin tosses.

In[1]: CoinFlips = RandomInteger[1,20]
Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

The sum of this list is the total number of heads tossed.

```
In[2]: Total[CoinFlips]
Out[2]: 13
```

Running the commands again will simulate another trial of 20 flips.