Data Fitting

Suppose you have a set of data, perhaps in scatterplot form.

We wish to help determine function(s) that represent the relationship between the variables involved.

This is called fitting the data to a function.
Today we focus on fitting data visually (without computations).

Springs and Elongations

Example: Modeling Spring Elongation
Take your favorite spring. Attach different masses. How much does it stretch from rest? [Its elongation.]

m	e
50	1.000
100	1.875
150	2.750
200	3.250
250	4.375
300	4.875
350	5.675
400	6.500
450	7.250
500	8.000
550	8.750

What do you notice?

Proportionality

When data seems to lie on a line through the origin, we expect the two variables to be proportional; in this case, $e=k m$ for some constant k.

We need to find this constant of proportionality k.
So: Estimate the slope of the line. How?
1 Guesstimating

2 Mathematically: Linear Regression / Least Squares
(For another day)

Fitting Gravity Data

Example. Modeling the dropping of a golf ball

Source:
practicalphysics.org

Let's use an experiment to test the gravity model from last time.

Use a camera to record the position every tenth of a second.
Data would be similar to the table \rightarrow It's plotted in the scatterplot below.

t	x
0.0	0.00
0.1	0.25
0.2	0.75
0.3	1.50
0.4	2.50
0.5	4.00
0.6	5.75
0.7	7.75
0.8	10.25
0.9	13.00
1.0	16.00
$\substack{\text { IIgnore data on } p .25] \\ \text { Itts a typo.] }}$	

Fitting Gravity Data

These data seem to fit a $\frac{}{\text { (type of function). }}$. How can we be sure?
1 Plot distance as a function of t^{2} and estimate constant of proportionality.

t	t^{2}	x
0.0		0.00
0.1		0.25
0.2		0.75
0.3		1.50
0.4		2.50
0.5		4.00
0.6		5.75
0.7		7.75
0.8		10.25
0.9		13.00
1.0		16.00

Fitting Gravity Data

When fitting data to a polynomial, an alternate method is:
2 * Plot the log of distance as a function of log of time. *

- WHY? Suppose $x=C t^{k}$. Taking a logarithm of both sides, $\ln x=\ln \left(C t^{k}\right)=$

Conclusion: To approximate C and k,

- First, calculate $\ln x$ and $\ln t$ for each datapoint.
- Fit the transformed data to a line.
- The slope is an approximation for k
- The y-intercept approximates $\ln C$.
$\log (\mathrm{x})$ as a function of $\log \log (\mathrm{t}$ Disance $)$

$\log x \approx 2 \log t+1.2$

Functions You Should Recognize on Sight

Fitting Gravity Data

We have determined that our gravity model

$$
x(t)=16 t^{2}
$$

appears to model the dropping of a golf ball.

Example. Raindrops-Our model gives their position as $x(t)=16 t^{2}$. A raindrop falling from 1024 feet would land after $t=8$ seconds. However, an experiment shows that the fastest drop takes 40 seconds, and that drops fall at different rates depending on their size.

Even if we have a good model for one situation doesn't mean it will apply everywhere. We always need to question our assumptions.
-Extensive gravity discussion in Section 1.3.-

