Data Fitting

Suppose you have a set of data, perhaps in scatterplot form.

We wish to help determine function(s) that represent the relationship between the variables involved.

This is called **fitting the data** to a function.

Today we focus on fitting data visually (without computations).

Springs and Elongations

Example: Modeling Spring Elongation

Take your favorite spring. Attach different masses. How much does it stretch from rest? [Its elongation .]		е
		1.000
		1.875
When we plot the data, we get the following scatterplot .		2.750
		3.250
Elongation of a Spring Elongation (e)		4.375
$\begin{bmatrix} 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ 0 \\ 0 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 400 \\ 500 \\ Mass(x) \\ Mass(x)$	300	4.875
	350	5.675
	400	6.500
	450	7.250
	500	8.000
		8.750
What do you notice?		

Proportionality

When data seems to lie on a line through the origin, we expect the two variables to be **proportional**; in this case, e = km for some constant k.

We need to find this constant of proportionality k.

So: Estimate the slope of the line. How?

1 Guesstimating

2 Mathematically: Linear Regression / Least Squares (For another day)

Example. Mo	odeling the dropping of a golf ball	t	x
	Let's use an experiment to test the	0.0	0.00
$\begin{array}{c c} \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & &$	gravity model from last time.	0.1	0.25
	0.2	0.75	
	0.3	1.50	
	0.4	2.50	
	0.5	4.00	
	0.6	5.75	
	0.7	7.75	
Q_ 8		0.8	10.25
	0.9	13.00	
	10	1.0	16.00
Source: practicalphysics.org	s Time (r)	[Ignore data on p. 25.] [It's a typo.]	

0.0 0.2 0.4 0.6 0.8 1.0

These data seem to fit a $\frac{1}{(type of function)}$. How can we be sure?

1 Plot distance as a function of t^2 and estimate constant of proportionality.

	t	t ²	X
	0.0		0.00
	0.1		0.25
	0.2		0.75
	0.3		1.50
			2.50
x as a function of t^{μ}	0.5		4.00
•	0.6		5.75
	0.7		7.75
	0.8		10.25
• 10^2 04 06 08 10 r^2	0.9		13.00
	1.0		16.00

When fitting data to a polynomial, an alternate method is:

- 2 \star Plot the log of distance as a function of log of time. \star
- ► WHY? Suppose x = Ct^k. Taking a logarithm of both sides, ln x = ln(Ct^k) =

Conclusion: To approximate C and k,

- ► First, calculate ln x and ln t for each datapoint.
- ▶ Fit the transformed data to a line.
 - ▶ The slope is an approximation for *k*
 - ► The *y*-intercept approximates ln *C*.

Functions You Should Recognize on Sight

We have determined that our gravity model $x(t) = 16t^2$

appears to model the dropping of a golf ball.

Example. Raindrops—Our model gives their position as $x(t) = 16t^2$.

A raindrop falling from 1024 feet would land after t = 8 seconds.

However, an experiment shows that the fastest drop takes 40 seconds, and that drops fall at different rates depending on their size.

Even if we have a good model for one situation doesn't mean it will apply everywhere. *We always need to question our assumptions.*

-Extensive gravity discussion in Section 1.3.-