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Data Fitting

Suppose you have a set of data, perhaps in scatterplot form.
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We wish to help determine function(s) that represent the
relationship between the variables involved.

This is called fitting the data to a function.

Today we focus on fitting data visually (without computations).
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Springs and Elongations

Example: Modeling Spring Elongation

Take your favorite spring. Attach different masses.
How much does it stretch from rest? [Its elongation.]

When we plot the data, we get the following scatterplot.
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What do you notice?

m e

50 1.000
100 1.875
150 2.750
200 3.250
250 4.375
300 4.875
350 5.675
400 6.500
450 7.250
500 8.000
550 8.750
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Proportionality

When data seems to lie on a line through the origin, we expect the two
variables to be proportional; in this case, e = km for some constant k.

We need to find this constant of proportionality k.

So: Estimate the slope of the line. How?

1 Guesstimating
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2 Mathematically: Linear Regression / Least Squares
(For another day)
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Fitting Gravity Data

Example. Modeling the dropping of a golf ball

Source:
practicalphysics.org

Let’s use an experiment to test the
gravity model from last time.

Use a camera to record the position
every tenth of a second.

Data would be similar to the table→
It’s plotted in the scatterplot below.
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t x

0.0 0.00
0.1 0.25
0.2 0.75
0.3 1.50
0.4 2.50
0.5 4.00
0.6 5.75
0.7 7.75
0.8 10.25
0.9 13.00
1.0 16.00

[Ignore data on p. 25.]
[It’s a typo.]
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Fitting Gravity Data

These data seem to fit a (type of function) . How can we be sure?

1 Plot distance as a function of t2 and estimate constant of
proportionality.

t t2 x

0.0 0.00
0.1 0.25
0.2 0.75
0.3 1.50
0.4 2.50
0.5 4.00
0.6 5.75
0.7 7.75
0.8 10.25
0.9 13.00
1.0 16.00
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Fitting Gravity Data

When fitting data to a polynomial, an alternate method is:

2 � Plot the log of distance as a function of log of time. �

� WHY? Suppose x = Ctk . Taking a logarithm of both sides,
ln x = ln(Ctk) =

Conclusion: To approximate C and k,

� First, calculate ln x and ln t
for each datapoint.

� Fit the transformed data to a line.

� The slope is an approximation for k
� The y -intercept approximates ln C .
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log of Time
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log of Distance
log�x� as a function of log�t�

log x ≈ 2 log t + 1.2
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Functions You Should Recognize on Sight
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Fitting Gravity Data
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Distance �x�x as a function of tWe have determined that our gravity model
x(t) = 16t2

appears to model the dropping of a golf ball.

Example. Raindrops—Our model gives their position as x(t) = 16t2.

A raindrop falling from 1024 feet would land after t = 8 seconds.

However, an experiment shows that the fastest drop takes 40 seconds,
and that drops fall at different rates depending on their size.

Even if we have a good model for one situation doesn’t mean it will
apply everywhere. We always need to question our assumptions.

—Extensive gravity discussion in Section 1.3.—


