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Example. A rectangular box with no lid is made from 12 m? of

cardboard. What is the maximum volume of the box?

Solution. Let length, width, and height be x, y, and z, respectively.
Then the question asks us to maximize V = :
subject to

12—xy
2x+2y "

12—xy).

Inserting, V = Xy(2x+2y

Solving for z gives z =

: : v __ v _
To find an optimum value, solve for 5 =0 and %7 = 0.

@:8:1272 —-y?=0

oy = Xy —y* =

Solving these simultaneous equations, 12 — 2xy = x% = y? = x = +y.
Because this is real world, ~, so we solve 12 — 3x2 =0:

This problem must have an absolute maximum, which must occur
at a critical point. (Why?) Therefore (x,y,z) = (2,2,1) is the
absolute maximum, and the maximum volume is xyz = 4.
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Optimization subject to constraints

The method of Lagrange multipliers is an alternative way to find
maxima and minima of a function f(x, y. z) subject to a given
constraint g(x,y.z) = k.

Motivating Example. Suppose you are trying to find the maximum
and minimum value of f(x,y) =y — x when we only consider
points on the curve g(x,y) = x? + 4y? = 36.

What should we do?
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» Solve for all tuples (x,y,z, A) such that

Vf(x,y,z) =X-Vg(x,y,z) and g(x,y,z)=k
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The method of Lagrange multipliers

To find the maxima and minima of f(x,y.z) subject to the
constraint g(x, y,z) = k (as long as Vg # 0 on this constraint)

» Solve for all tuples (x,y,z, A) such that
Vf(x,y,z) =X-Vg(x,y,z) and g(x,y,z)=k

» (Solve this system of four equations and four unknowns.)
» In words: the gradient of f is parallel to the gradient of g.

» Evaluate f at all points (x,y, z) you find.

» The largest f value corresponds to a maximum
» The smallest f value corresponds to a minimum.

> A is called a Lagrange multiplier.
» Careful about when this applies. (Vg # 0)
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Optimization Example, revisited

Example. A rectangular box with no lid is made from 12 m? of
cardboard. What is the maximum volume of the box?

Goal: Maximize V' = xyz subject to g(x,y,z) = 2xz + 2yz + xy = 12,
By the method of Lagrange multipliers, we need to solve:

(yz,xz,xy) = AN2z+y,2z+x,2x+2y) and 2xz+2yz+xy = 12
yz=A2z+y)

xz = M2z + x)

xy = A(2x + 2y)

2xz +2yz + xy = 12

Solve:

» Four equations, four unknowns, so possibly solvable.
» Eliminate \ using first two equations. (& that A # 0 by Eq. (4).)
» Multiply Eq. (2) by y, Eq. (3) by z, simplify.
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Why does this work?

For functions of two variables:

The tangent line to the level curve g(x,y) = k and the level curve
f(x,y) =max are parallel, so their normals are too. We conclude

that VF(x,y) = A\g(x,y).
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Why does this work?

For functions of two variables:

The tangent line to the level curve g(x,y) = k and the level curve
f(x,y) =max are parallel, so their normals are too. We conclude
that VF(x,y) = A\g(x,y).

For functions of three variables:

The tangent plane to the level curve g(x, y,z) = k and the level
curve f(x,y,z) =max are parallel, so their normals are too. We
conclude that Vf(x,y, z) = A\g(x,y, z).
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Game plan:

13



Lagrange multipliers — §11.8

Another example

Example. Find the extreme values of f(x,y) = x? + 2y? in the
region x% + y? < 1.

Game plan:
» Check for critical points on the interior of the region.

» Use Lagrange multipliers to find maxs, mins on boundary.

13



Lagrange multipliers — §11.8 13

Another example

Example. Find the extreme values of f(x,y) = x? + 2y? in the
region x% + y? < 1.

Game plan:
» Check for critical points on the interior of the region.

For critical points, solve f, =0, f, = 0:

What is f(x, y) there?

» Use Lagrange multipliers to find maxs, mins on boundary.



Lagrange multipliers — §11.8 13

Another example

Example. Find the extreme values of f(x,y) = x? + 2y? in the
region x% + y? < 1.

Game plan:
» Check for critical points on the interior of the region.

For critical points, solve f, =0, f, = 0:

What is f(x, y) there?
» Use Lagrange multipliers to find maxs, mins on boundary.

Find x, y, A satisfying Vf = AVg and x% + y? = 1.

What is f(x, y) there?



Lagrange multipliers — §11.8 13

Another example

Example. Find the extreme values of f(x,y) = x? + 2y? in the
region x% + y? < 1.

Game plan:
» Check for critical points on the interior of the region.

For critical points, solve f, =0, f, = 0:

What is f(x, y) there?
» Use Lagrange multipliers to find maxs, mins on boundary.

Find x, y, A satisfying Vf = AVg and x% + y? = 1.

What is f(x, y) there?

Solution?
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