1. (10 pts) A lamina occupies the region $D=\left\{(x, y): x^{2}+y^{2} \leq 25, x \leq y\right\}$ and has density $\rho(x, y)=e^{-\sqrt{x^{2}+y^{2}}}$. Find the mass of the lamina.
2. (10 pts) Find the volume of the solid $E \subset \mathbb{R}^{3}$ that consists of all points satisfying the equations $x^{2}+y^{2}+z^{2} \leq 1$ and $z \geq \sqrt{3} \sqrt{x^{2}+y^{2}}$. (You are given that $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$.)
3. (10 pts) Let f be an integrable function. Change the order of integration for the iterated integral $\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} f(x, y, z) d z d x d y$ to be of the form $\iiint f(x, y, z) d y d z d x$.
4. (15 pts) Define the vector field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$.
(a) (5 pts) Draw what the vector field looks like in the square $[0,1] \times[0,1]$. [You must draw at least nine arrows.]
(b) (1 pt) On your vector field drawing in part (a), draw the curve C that starts at $(0,0)$ and ends at $(1,1)$ that follows the graph of $y=\sqrt{x}$.
(c) (4 pts) Using two to three sentences, explain in words whether you should expect the quantity $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ to be positive or negative.
(d) (5 pts) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
