1. (5 pts) What is the difference between a level curve and a level surface?
2. (10 pts)
(a) (6 pts) Sketch several level curves of the function $f(x, y)=e^{x}+y$.
(b) (4 pts) Describe in a few sentences what the graph of $f(x, y)$ looks like.
3. (10 pts) Suppose $z=e^{x} \sin y$ where $x=3 r s$ and $y=r^{4} s+r s^{4}$.

Determine a formula for $\frac{\partial z}{\partial r}$ written as a function of r and s.
4. (10 pts)
(a) (5 pts) In which direction is the function

$$
h(x, y, z)=3 x^{2}+y^{2}+z^{2}
$$

decreasing the fastest at the point $(1,-1,4)$?
(b) (5 pts) What is the directional derivative of h in the direction found in part (a) at the point $(1,-1,4)$?
5. (15 pts)
(a) (5 pts) Find all critical points of the function $g(x, y)=x^{3}-12 x y+8 y^{3}+4$.
(b) (5 pts) Classify each critical point as a local maximum, local minimum, or saddle point.
(c) (5 pts) For ONE of the critical points found in part (a), give the equation of the tangent plane to the surface above that point.
6. (10 pts) Write at least two paragraphs that give a geometrical justification of why the method of Lagrange multipliers works.
[You may wish to include pictures to complement your discussion.]

