Here are some double angle formulas for you. Enjoy.
$\sin (2 \theta)=2 \sin \theta \cos \theta \bullet \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \bullet \sin ^{2} \theta=\frac{1}{2}(1-\cos (2 \theta)) \bullet \cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta))$

1. (5 pts) Give the precise definition of a smooth curve.
2. $(8 \mathrm{pts}=2 \mathrm{pts}$ each $)$ Determine whether the following statements are True or False.
[No explanation for your answer is required.]
(a) \mathbf{T} or \mathbf{F} : Let \mathbf{a} and \mathbf{b} be two vectors. Then the quantity $\mathbf{a} \cdot \mathbf{b}$ is always defined and the result is a scalar.
(b) \mathbf{T} or \mathbf{F} : Given two vectors $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$, then $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$.
(c) \mathbf{T} or \mathbf{F} : When defined, the projection of a vector \mathbf{b} onto a vector \mathbf{a} is always parallel to the vector \mathbf{a}.
(d) \mathbf{T} or \mathbf{F} : All two dimensional cross sections of a hyperbolic paraboloid (also known as a saddle) are hyperbolas.
3. (10 pts) Draw the graphs of each of the following two equations. Explain why you drew what you drew.
(a) The parametric equations $x(t)=3 t-4$ and $y(t)=2 t$, for $-1 \leq t \leq 2$
(b) The polar equation $\theta=-\pi / 6$
4. (12 pts) Find the area inside all leaves of the rose defined by the polar equation

$$
r=\sin (6 \theta) \text { for } 0 \leq \theta \leq 2 \pi .
$$

[Give an exact answer, not a decimal.]
5. (10 pts) Find the unit tangent vector \mathbf{T} to the curve $\mathbf{r}(t)=\left\langle\ln t, 2 \sqrt{t}, t^{2}\right\rangle$ at the point $(0,2,1)$.
6. (10 pts) Set up but do not evaluate the integral that finds the arc length of the vector function

$$
\mathbf{r}(t)=\langle\ln (t), \sin (\cos t)\rangle
$$

from $t=2$ to $t=5$.
[You must calculate any derivatives, but there is no need to simplify.]
7. (10 pts) If a particle is moving on the surface of a sphere of constant radius, show that the position vector and the velocity vector are perpendicular.
[Hint: What equation does $\mathbf{r}(t)$ satisfy?]

