Generalizations of Polar Coordinates

When 2-dim'I regions D have radial flavors, we use polar coordinates. When 3-dim'l regions E have radial flavors, there are two choices:

Cylindrical coordinates

A point can have coords (r, θ, z) :
(r, θ) are polar coords of $x y$-plane (r is the distance from the z-axis) and z is the "distance" to $x y$-plane

Useful when problems involve symmetry about an axis. Cylinder, Paraboloids, Cones w/flat bases

Spherical coordinates

A point can have coords (ρ, θ, ϕ).
ρ is the distance from the origin
θ is same as in polar
ϕ is \angle between $+z$ axis and $\overline{O P}$.
Useful when problems involve symmetry about a point
Spheres, Cones with curved bases.

Converting from cartesian coordinates

Cylindrical coordinates

$\begin{array}{lll}\text { Conversion: } & & \\ x=r \cos \theta & y=r \sin \theta & z=z \\ r^{2}=x^{2}+y^{2} & \tan \theta=\frac{y}{x} & z=z\end{array}$

$$
d V=r d r d \theta d z
$$

Spherical coordinates

$$
\begin{array}{ll}
\text { Conversion: } & x=\rho \sin \phi \cos \theta \\
z=\rho \cos \phi & y=\rho \sin \phi \sin \theta \\
\rho^{2}=x^{2}+y^{2}+z^{2} ; & \tan \phi=\frac{\sqrt{x^{2}+y^{2}}}{z}
\end{array}
$$

$$
d V=\rho^{2} \sin \phi d \rho d \theta d \phi
$$

Practice

Cylindrical coordinates

Practice changing coordinates:
$(r, \theta, z)=\left(2, \frac{2 \pi}{3}, 1\right) ;(x, y, z)=(3,-3,7)$ Identify cyl. coord. equations:
2. $r=2 ; z=r^{2} ; r^{2}-2 z^{2}=4$
3. Sketch $r^{2} \leq z \leq 2-r^{2}$

Convert to cylindrical coordinates
4. $x^{2}+y^{2}+z^{2}=2 ; x^{2}+y^{2}=2 y$
5. Give solid between $x^{2}+y^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.
6. $\left\{\begin{aligned}-2 & \leq x \leq 2 \\ -\sqrt{4-x^{2}} & \leq y \leq \sqrt{4-x^{2}} \\ \sqrt{x^{2}+y^{2}} & \leq z \leq 2\end{aligned}\right\}$

Spherical coordinates

Practice changing coordinates:
$(\rho, \theta, \phi)=\left(2, \frac{\pi}{4}, \frac{\pi}{3}\right) ;(x, y, z)=(-1,1, \sqrt{6})$ Identify sph. coord. equations:
2. $\phi=\frac{\pi}{3} ; \rho \sin \phi=2 ; \rho=2 \cos \phi$
3. Sketch $\left(2 \leq \rho \leq 3 \& \frac{\pi}{2} \leq \phi \leq \pi\right)$

Sketch $\left(0 \leq \phi \leq \frac{\pi}{3} \& \rho \leq 2\right)$
Convert to spherical coordinates
4. $z=x^{2}+y^{2} ; z=x^{2}-y^{2}$
5. Give solid inside $x^{2}+y^{2}+z^{2}=4$, above $x y$-plane, below $z=\sqrt{x^{2}+y^{2}}$.
6. $\left\{\begin{aligned} 0 & \leq x \leq 1 \\ 0 & \leq y \leq \sqrt{1-x^{2}} \\ \sqrt{x^{2}+y^{2}} & \leq z \leq \sqrt{2-x^{2}-y^{2}}\end{aligned}\right\}$

