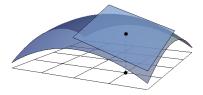
Partial derivatives allow us to see how fast a function changes. $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.

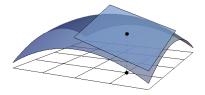


Partial derivatives allow us to see how fast a function changes. $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.

Question: How fast is f(x, y) changing in some other direction?

Partial derivatives allow us to see how fast a function changes. $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction.

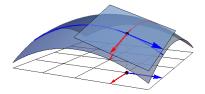
Question: How fast is f(x, y) changing in some other direction? What does that even mean?



Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in **some other direction**? What does that even mean?

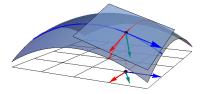


Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in **some other direction**? What does that even mean?

Question: What is the rate of change of f toward *unit vector* $\vec{u} = (a, b) = (\cos \theta, \sin \theta)$?

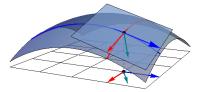


Partial derivatives allow us to see how fast a function changes.

 $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in **some other direction**? What does that even mean?

Question: What is the rate of change of f toward *unit vector* $\vec{\mathbf{u}} = (a, b) = (\cos \theta, \sin \theta)$?



Definition: The directional derivative of f in the direction of \vec{u} is

$$D_{\vec{\mathbf{u}}}f(x,y) = f_x(x,y) a + f_y(x,y) b.$$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$. Solution. First, find the vector $\vec{u} =$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Solution. First, find the vector $\vec{u} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \qquad \qquad \frac{\partial f}{\partial y} =$$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Solution. First, find the vector $\vec{u} =$ Next, find the partial derivatives:

 $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Solution. First, find the vector $\vec{u} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Solution. First, find the vector $\vec{u} =$ Next, find the partial derivatives:

$$rac{\partial f}{\partial x} = rac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

$$D_{\vec{u}}f(1,2) = (3 \cdot 1 - 3 \cdot 2)\frac{\sqrt{3}}{2} + (-3 \cdot 1 + 8 \cdot 2)\frac{1}{2}$$
$$= \frac{13 - 2\sqrt{3}}{2} \approx 3.9$$

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the *xy*-plane at angle $\theta = \pi/6$.

Solution. First, find the vector $\vec{u} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

$$\begin{split} D_{\vec{u}}f(1,2) &= (3\cdot 1 - 3\cdot 2)\frac{\sqrt{3}}{2} + (-3\cdot 1 + 8\cdot 2)\frac{1}{2} \\ &= \frac{13 - 2\sqrt{3}}{2} \approx 3.9 \end{split}$$

Interpretation: One unit step in the \vec{u} direction increases f(x, y) by approximately 3.9 units.

Motivating the gradient

Notice that $D_{\vec{u}}f = f_x a + f_y b$ We can rewrite this as $D_{\vec{u}}f = \langle f_x, f_y \rangle \cdot \langle a, b \rangle$

Definition: The vector $\langle f_x, f_y \rangle = f_x \vec{\mathbf{i}} + f_y \vec{\mathbf{j}}$ is called the **gradient** of f. We write ∇f or grad f.

So an alternate way to write $D_{\vec{u}}f(x, y)$ is $\nabla f(x, y) \cdot \vec{u}$.

The gradient is also defined for functions of more than two variables. For example, for a function of three variables, f(x, y, z),

$$abla f = \langle f_x, f_y, f_z \rangle = f_x \vec{\mathbf{i}} + f_y \vec{\mathbf{j}} + f_z \vec{\mathbf{k}}$$

and $D_{\vec{u}}f = \nabla f \cdot \vec{u}$

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

Find a unit vector in the direction of \vec{v} .

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

Find a unit vector in the direction of \vec{v} .

```
Find \nabla f, plug in (1, 3, 0).
```

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

Find a unit vector in the direction of \vec{v} .

```
Find \nabla f, plug in (1, 3, 0).
```

▶ Take the dot product.

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

Find a unit vector in the direction of \vec{v} .

```
Find \nabla f, plug in (1, 3, 0).
```

► Take the dot product.

Therefore $D_{\vec{u}}f(1,3,0) =$

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$.

Step back. What do we want to calculate?

Game Plan:

Find a unit vector in the direction of \vec{v} .

```
Find \nabla f, plug in (1, 3, 0).
```

► Take the dot product.

Therefore $D_{\vec{u}}f(1,3,0) =$

Interpretation?

Question: Given a function f(x, y) and a point (x_0, y_0) ,

in which direction is the function increasing the *fastest*?

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the *fastest*?

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the *fastest*? And how fast is the function increasing in that direction?

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the *fastest*? And how fast is the function increasing in that direction? Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)$!!

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the *fastest*? And how fast is the function increasing in that direction? Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)$!!

But why?!?

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest? And how fast is the function increasing in that direction? Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)$!!

But why?!? $D_{\vec{u}}f = \nabla f \cdot \vec{u} = |\nabla f| |\vec{u}| \cos(\theta)$ $= |\nabla f| \cos(\theta)$

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the *fastest*? And how fast is the function increasing in that direction? Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)$!!

But why?!?
$$D_{\vec{u}}f = \nabla f \cdot \vec{u} = |\nabla f| |\vec{u}| \cos(\theta)$$
$$= |\nabla f| \cos(\theta)$$

Question: For what angle θ is this maximized? And what is the max? *Answer:*

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the *fastest*? And how fast is the function increasing in that direction? Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)$!!

But why?!?
$$D_{\vec{u}}f = \nabla f \cdot \vec{u} = |\nabla f| |\vec{u}| \cos(\theta)$$
$$= |\nabla f| \cos(\theta)$$

Question: For what angle θ is this maximized? And what is the max? *Answer:*

Consequence: ∇f represents the direction of fastest increase of f.

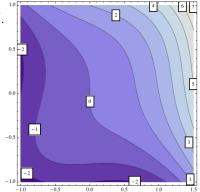
 ∇f represents the direction of fastest increase of f.

We can understand this graphically through the contour map.

 ∇f represents the direction of fastest increase of f.

We can understand this graphically through the contour map.

At (x₀, y₀), the vector ∇f(x₀, y₀) is perpendicular to the level curves of f.



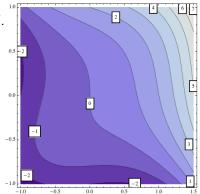
 ∇f represents the direction of fastest increase of f.

We can understand this graphically through the contour map.

At (x₀, y₀), the vector ∇f(x₀, y₀) is perpendicular to the level curves of f.

Why?

- Along a level curve, f is constant.
- The fastest change should be perpendicular to the level curve.



 ∇f represents the direction of fastest increase of f.

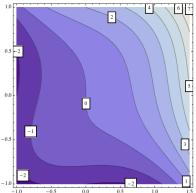
We can understand this graphically through the contour map.

At (x₀, y₀), the vector ∇f(x₀, y₀) is perpendicular to the level curves of f.

Why?

- Along a level curve, f is constant.
- The fastest change should be perpendicular to the level curve.

♡ Connecting along this path gives ♡
 ♡ the path of steepest ascent. ♡
 Chloe says "hi".



Functions of two variables A *level curve* f(x, y) = c Functions of three variables A *level surface* F(x, y, z) = c

Functions of two variables A *level curve* f(x, y) = c $\nabla f \longleftrightarrow$ fastest increase Functions of three variables A *level surface* F(x, y, z) = c $\nabla F \iff$ fastest increase

Functions of two variables A *level curve* f(x, y) = c $\nabla f \longleftrightarrow$ fastest increase So: ∇f is \perp to level curve at (x_0, y_0) Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \perp to level surface at (x_0, y_0, z_0)

Functions of two variables A *level curve* f(x, y) = c

 $abla f \longleftrightarrow$ fastest increase So: abla f is \perp (to tangent line) to level curve at (x_0, y_0) Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow \text{ fastest increase}$ so ∇F is \perp (to tangent plane) to level surface at (x_0, y_0, z_0)

Functions of two variables A *level curve* f(x, y) = c

 $\begin{array}{l} \nabla f \longleftrightarrow \text{fastest increase} \\ \text{So: } \nabla f \text{ is } \bot \text{ (to tangent line)} \\ \text{ to level curve at } (x_0, y_0) \end{array}$

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow$ fastest increase so ∇F is \perp (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the normal vector to the level surface at (x_0, y_0, z_0) .

Functions of two variables A *level curve* f(x, y) = c

 $\begin{array}{l} \nabla f \longleftrightarrow \text{ fastest increase} \\ \text{So: } \nabla f \text{ is } \bot \text{ (to tangent line)} \\ \text{ to level curve at } (x_0, y_0) \end{array}$

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow \text{ fastest increase}$ so ∇F is \perp (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the normal vector to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$

Functions of two variablesFunctions of three variablesA level curve f(x, y) = cA level surface F(x, y, z) = c $\nabla f \leftrightarrow$ fastest increase $\nabla F \leftrightarrow$ fastest increaseSo: ∇f is \bot (to tangent line)so ∇F is \bot (to tangent plane)to level curve at (x_0, y_0) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the normal vector to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$

Also: for any curve $\vec{\mathbf{r}}(t) = (x(t), y(t), z(t))$ on the surface,

$$F(x(t), y(t), z(t)) = k$$

Functions of two variablesFunctionsA level curve f(x, y) = cA level sur $\nabla f \leftrightarrow$ fastest increase $\nabla F \leftrightarrow$ fastestSo: ∇f is \perp (to tangent line)so ∇F is \perp to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow \text{ fastest increase}$ so ∇F is \perp (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the normal vector to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$

Also: for any curve $\vec{\mathbf{r}}(t) = (x(t), y(t), z(t))$ on the surface,

$$F(x(t), y(t), z(t)) = k \quad \stackrel{\text{chain}}{\Longrightarrow} \quad \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} = 0$$

Functions of two variablesFunctionsA level curve f(x, y) = cA level $\nabla f \leftrightarrow$ fastest increase $\nabla F \leftarrow$ So: ∇f is \perp (to tangent line)so ∇F

to level curve at (x_0, y_0)

Functions of three variables

A level surface F(x, y, z) = c

 $\nabla F \longleftrightarrow \text{ fastest increase}$ so ∇F is \perp (to tangent plane) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the normal vector to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$

Also: for any curve $\vec{\mathbf{r}}(t) = (x(t), y(t), z(t))$ on the surface,

$$F(x(t), y(t), z(t)) = k \quad \stackrel{\text{chain}}{\Longrightarrow} \quad \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} = 0$$

which means $\nabla F \perp \vec{r}'(t) = 0$