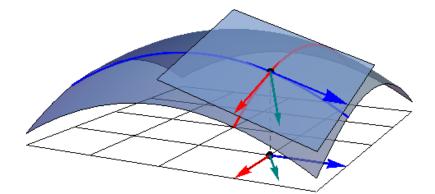
Definition of the directional derivative

Partial derivatives allow us to see how fast a function changes. $D_x f = f_x(x, y)$ is the rate of change of f in the x-direction. Toward $\vec{i} = (1, 0)$ $D_y f = f_y(x, y)$ is the rate of change of f in the y-direction. Toward $\vec{j} = (0, 1)$

Question: How fast is f(x, y) changing in **some other direction**? What does that even mean?

Question: What is the rate of change of f toward unit vector $\vec{\mathbf{u}} = (a, b) = (\cos \theta, \sin \theta)$?



Definition: The directional derivative of f in the direction of \vec{u} is $D_{\vec{u}}f(x,y) = f_x(x,y) a + f_y(x,y) b.$

Directional derivative example

Example. Find $D_{\vec{u}}f$ if $f(x, y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector in the xy-plane at angle $\theta = \pi/6$.

Solution. First, find the vector $\vec{u} =$ Next, find the partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} =$$

We conclude that $D_{\vec{u}}f(x,y) =$

Example. Calculate $D_{\vec{u}}f(1,2)$ and interpret this answer.

$$D_{\vec{u}}f(1,2) = (3 \cdot 1 - 3 \cdot 2)\frac{\sqrt{3}}{2} + (-3 \cdot 1 + 8 \cdot 2)\frac{1}{2}$$
$$= \frac{13 - 2\sqrt{3}}{2} \approx 3.9$$

Interpretation: One unit step in the \vec{u} direction increases f(x, y) by approximately 3.9 units.

Motivating the gradient

Notice that $D_{\vec{u}}f = f_x a + f_y b$ We can rewrite this as $D_{\vec{u}}f = \langle f_x, f_y \rangle \cdot \langle a, b \rangle$

Definition: The vector $\langle f_x, f_y \rangle = f_x \vec{i} + f_y \vec{j}$ is called the gradient of f. We write ∇f or grad f.

So an alternate way to write $D_{\vec{u}}f(x,y)$ is $\nabla f(x,y) \cdot \vec{u}$.

The gradient is also defined for functions of more than two variables. For example, for a function of three variables, f(x, y, z),

$$\nabla f = \langle f_x, f_y, f_z \rangle = f_x \vec{\mathbf{i}} + f_y \vec{\mathbf{j}} + f_z \vec{\mathbf{k}}$$

and $D_{\vec{u}}f = \nabla f \cdot \vec{u}$

Applying ∇f

Example. Let $f(x, y, z) = x \sin(yz)$. Find the directional derivative of f at (1, 3, 0) in the direction $\vec{v} = \vec{i} + 2\vec{j} - \vec{k}$.

Step back. What do we want to calculate?

Game Plan:

- Find a unit vector in the direction of \vec{v} .
- Find ∇f , plug in (1, 3, 0).
- ► Take the dot product.

Therefore $D_{\vec{u}}f(1,3,0) =$

Interpretation?

An important interpretation of the gradient

Question: Given a function f(x, y) and a point (x_0, y_0) , (or a function f(x, y, z) and a point (x_0, y_0, z_0)), in which direction is the function increasing the fastest? And how fast is the function increasing in that direction? Answer: At a rate of $|\nabla f(x_0, y_0)|$, in the direction of $\nabla f(x_0, y_0)$!! $D_{\vec{u}}f = \nabla f \cdot \vec{u} = |\nabla f| |\vec{u}| \cos(\theta)$

But why?!?
$$= |\nabla f| \cos(\theta)$$

Question: For what angle θ is this maximized? And what is the max? *Answer:*

Consequence: ∇f represents the direction of fastest increase of f.

Visualization of the gradient

 ∇f represents the direction of fastest increase of f.

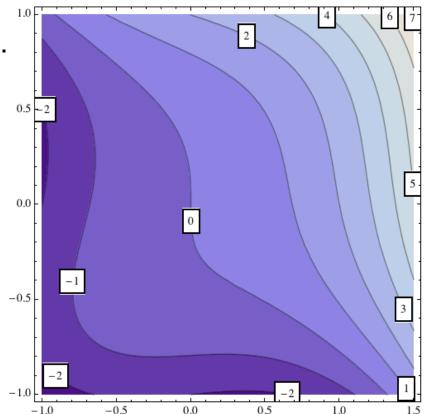
We can understand this graphically through the contour map.

At (x_0, y_0) , the vector $\nabla f(x_0, y_0)$ is perpendicular to the level curves of f.

Why?

- \blacktriangleright Along a level curve, f is constant.
- The fastest change should be perpendicular to the level curve.

♡ Connecting along this path gives ♡
♡ the path of steepest ascent. ♡
Chloe says "hi".



Tangent planes to level surfaces

Functions of two variablesFunctions of three variablesA level curve f(x, y) = cA level surface F(x, y, z) = c $\nabla f \leftrightarrow$ fastest increase $\nabla F \leftrightarrow$ fastest increaseSo: ∇f is \bot (to tangent line)so ∇F is \bot (to tangent plane)to level curve at (x_0, y_0) to level surface at (x_0, y_0, z_0)

 $\nabla F(x_0, y_0, z_0)$ is the normal vector to the level surface at (x_0, y_0, z_0) .

This means: The equation of THE tangent plane to THE level surface passing through the point (x_0, y_0, z_0) is

 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$

Also: for any curve $\vec{\mathbf{r}}(t) = (x(t), y(t), z(t))$ on the surface,

$$F(x(t), y(t), z(t)) = k \quad \stackrel{\text{chain}}{\Longrightarrow} \quad \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} = 0$$

which means $\nabla F \perp \vec{\mathbf{r}}'(t) = 0$