ISC 6450, Spring 2004, Dr. Larry S.
Liebovitch
Methods in Complex Systems
18426 M...F 1:00 PM - 2:50 PM (Complex Systems & Brain Sciences
Classroom, Innovation Centre II, Boca Raton
Introduction to Linear and Nonlinear StatisticsRequired for the Ph.D. program in Complex
Systems and Brain Sciences. |
Larry S. Liebovitch, Ph.D.
Florida Atlantic University
Center for
Complex Systems and Brain Sciences
777 Glades Road, Boca Raton, FL 33431
telephone:
561.297.2239, fax: 561.297.2223
http://www.ccs.fau.edu/~liebovitch/larry.html
If you want to speak with me please telephone, DO NOT SEND E-MAIL (I am overwhelmed with e-mail which I do not have time to read.)
Experimental design and statistical analysis of linear and nonlinear systems. Presents the classical statistical analysis and inference of linear systems that have a small number of noninteracting pieces and how those statistical methods and analysis procedures are different for nonlinear complex systems with many pieces that interact strongly with each other, such as fractals and chaos.
required
M. R. Spiegel and L. J. Stephens. Schaum's
Outlines: Statistics, 3rd Edition. McGraw Hill, New York
recommended
M. Hollander and D. A. Wolf. Nonparametric
Statistical Nethods. John Wiley and Sons, New York, 1973.
L. S.
Liebovtich. Fractals and Chaos Simplified for the Life Sciences.
Oxford University Press, New York, 1998.
Attendance: Students are expected to attend all scheduled classes.
Should it become necessary for a student to miss a class, the student is
responsible for the material covered during that class. It is the
responsibility of the student to withdraw from this class, should that status be
desired - the instructor cannot withdraw students from the course.
Reading the Textbook: PLEASE read the chapters assigned prior to the
class session in which the material will be presented.
Homework
Problems: Please try to turn in the homework problems on time. NONE will be
accepted after the last meeting of the class.
Grading: The grade will
be determined entirely from the homework problems. There will be no exams.
(Chapters in Spiegel textbook)
Homework #1
1) Compute the pdf (probability density function)
of the data in Spiegel problem 2.2 (page 41).
2) Compute the mean, standard
deviation of the data in #1.
3) Plot a Gaussian curve, using the mean and
standard deviation of #2 on the same pdf as obtained in #1.
4) Compute the
3rd and 4th moments of this data. Compare the 4th moment with 3s4.
5) Splatter ink on a piece of paper. Measure the diameter of 100 ink
spots. Compute the pdf of the diameters.
Homework #2
1) Use the data in Spiegel, Table 13.4, Problem
13.10, Page 291. Write a computer program that uses the least squares method
to determine the best straight line that represents the function of: a)
Weight as a function of Height as well as b) Height as a function of Weight
2)
Compute the correlation function r for the two lines in problem #1.
(OPTIONAL)
3) Write a computer program that uses the nonparametric Hodges-Lehmann
estimator for the slope and intercept for the two lines in problem #1.
Homework #3
1) Use the Chi-Square test to determine if the data
from the first homework (Spiegel Problem 2.2, page 41) is a Gaussian or not.
2)
Spiegel Problem 10.9, page 226.
3) Spiegel Problem 10.18, page 233.
4)
Spiegel Problem 11.6, page 248-9.
5) Spiegel Problem 11.8, page 250-1.
Homework #4
1) When a series of numbers is uncorrelated the
fractal parameter called the Hurst H coefficient is approximately equal to 0.5.
We found that H=0.61 in the data from one patient. If the data from the
patient was correlated, then when we shuffle it, those correlations should be
removed and the value of H should be closer to 0.5. To determine if the H
measured from the patient is different from 0.5, we shuffled that data and then
measured H. We did this 16 times. In these shuffled data sets we found that
H=0.55, 0.56, 0.64, 0.54, 0.51, 0.63, 0.55, 0.48, 0.62, 0.55, 0.54, 0.51, 0.53,
0.54, 0.54, 0.50. Is the H from the patient statistically significantly higher
than that of uncorrelated data? (HINT: We found that 3 out of 16 times the
value of H from the patient was greater than the uncorrelated randomized data.
Use a binomial test to determine if 3 out of 16 is statistically significant).
(OPTIONAL) 2) Perform a rank-sum (Wilcoxon) test on the data from Table 1. page
69 in Hollander and Wolfe to determine if there is a difference in the water
permeability between the two groups.
Homework #5
1) Spiegel Problems 16.4, 16.5, and 16.6, pages
374-7.
2) Spiegel Problem 16.11, pages 380-383.
3) Spiegel Problem
16.13, pages 383-7.