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Our ability to efficiently process information and generate appropriate responses depends
on the processes collectively called cognitive control. Despite a considerable focus in
the literature on the cognitive control of information processing, neural mechanisms
underlying control are still unclear, and have not been characterized by considering the
quantity of information to be processed. A novel and comprehensive account of cognitive
control is proposed using concepts from information theory, which is concerned with
communication system analysis and the quantification of information. This account treats
the brain as an information-processing entity where cognitive control and its underlying
brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis
and theory article justifies the validity and properties of such an account and relates
experimental findings to the frontoparietal network under the framework of information
theory.
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INTRODUCTION
The brain is constantly bombarded with more information from
multiple sensory channels than it can process. A critical chal-
lenge that it must address is to ensure that only goal-relevant
information reaches the level of focused attention. However,
information that does not reach that level cannot and should
not be fully excluded from ever reaching it because the informa-
tion may have behavioral relevance. Therefore, there is a need for
a dynamic control mechanism that permits the flexible alloca-
tion of resources to process subjectively important information.
Cognitive control refers to processes that flexibly and adaptively
allocate mental resources to permit the dynamic selection of
thoughts and actions in response to context-specific goals and
intentions (Posner and Snyder, 1975; Miller, 2000; Badre, 2008;
Kouneiher et al., 2009; Solomon et al., 2009).

Behaviorally, cognitive control is studied by using tasks where
there is an inherent conflict elicited by the stimuli or responses,
for example, in Stroop (Stroop, 1935; MacLeod, 1991) and flanker
(Eriksen and Eriksen, 1974) tasks. The magnitude of this con-
flict effect is indexed by the difference in reaction time (RT) and
accuracy across conditions with and without competing stim-
ulus dimensions (e.g., incongruent vs. congruent conditions in
the color Stroop) or computations (e.g., color naming with or
without word meaning processing). Conflict processing is usu-
ally accompanied by prolonged RT and increased error rate (e.g.,
Pardo et al., 1990; Carter et al., 1998; Botvinick et al., 1999;
Carter et al., 2000; Leung et al., 2000; van Veen et al., 2001;
Fan et al., 2005, 2003, 2007b, 2008b; Nee et al., 2007). Although
conflict effects are typically used in the study of cognitive con-
trol, I argue that they constitute a special case of more general
informational uncertainty. In what follows, I will take conflict
to reflect a high level of entropy (average uncertainty) over
competing choices, actions, or policies. This is to distinguish

it from the corresponding uncertainty over states of the world
that is resolved through perceptual inference. In other words,
I will be focusing on the uncertainty about what to do in a
given context—assuming that the context has been estimated or
inferred.

The general neural circuitry underlying cognitive control is
still not completely known, but activity in the anterior cingulate
cortex (ACC) has been consistently demonstrated in functional
magnetic resonance imaging (fMRI) studies [and also stud-
ies employing positron emission tomography (PET), electroen-
cephalography (EEG), and other imaging techniques] involving
tasks that invoke cognitive control. There is reliable functional
activation of the ACC and dorsolateral prefrontal cortex (DLPFC)
in tasks requiring the detection and resolution of conflict (e.g.,
Pardo et al., 1990; Botvinick et al., 1999, 2001; Carter et al.,
2000; MacDonald et al., 2000; Fan et al., 2003, 2005, 2007b,
2008b; Liu et al., 2004). Consequently, at least two major theo-
ries of cognitive control relate ACC activity to the monitoring of
conflict (Carter et al., 1998, 2000; Botvinick et al., 1999, 2001;
MacDonald et al., 2000; Braver et al., 2001) or the resolution
of conflict (Posner and DiGiralomo, 1998) (for other theories
of ACC, see Ridderinkhof et al., 2007). Contrary to these the-
ories, I argue that ACC, anterior insular cortex (AI), and other
brain areas of the frontoparietal network process uncertainty,
and will demonstrate that conflict is a special case of increased
uncertainty.

INFORMATION THEORY AND COGNITIVE CONTROL
DEFINITION OF INFORMATION: ENTROPY, SURPRISE, AND ENTROPY
RATE
Before I discuss the role of information theory in cognitive con-
trol, I will briefly review its key concepts. In Shannon’s informa-
tion theory (Shannon and Weaver, 1949), information is defined
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as entropy, a measure of uncertainty or freedom of choice when
selecting a message (e.g., a sequence of symbols). The information
entropy of a discrete random variable X that can take the possible
events of {x1 . . . xn} is

H(X) = E(I(X)) = −
n∑

i = 1

p(xi) log2 p(xi), (1)

where p(xi) is the probability of event xi. Entropy is in units of
bits, because of the base 2 logarithm. Information entropy quanti-
fies the information contained in a message (a sequence) sampled
from X, whereas I(X) is the information content. The surprise,

I(xi) = − log2 p(xi), (2)

quantifies the information conveyed by the occurrence of event
xi. A low probability event has a high surprise measure.

In an event sequence, if events are predictable, the uncertainty
of the events is low and thus the information entropy of this
sequence is low. For example, a long sequence with a repeating
series of events has an entropy of 0 bits, because every event is
predictable.

The information entropy in the case of a RT task using two
response alternatives with probabilities p and q = 1 − p is

H = − (
p log2p + q log2q

)
. (3)

If we plot H as a function of p, it is an inverted U-function
with H = 0 if p is 0 or 1, and H = 1, its maximum, when the
probabilities of the two choices are equal, i.e., if p = q = 0.5
(Figure 1).

FIGURE 1 | Information entropy H as a function of the probability p in

the case of two possible events.

Suppose there are two events x and y. Let p(i, j) be the
probability of the joint occurrence of events x and y. The entropy
of the joint event is

H(x, y) = −
∑

i,j

p(i, j) log2 p(i, j) ≤ H(x) + H(y). (4)

That is, the entropy of a joint event is less than or equal to the
sum of the entropy of the individual events, with equality only
if the events are independent. This also implies that dependent
events will have lower entropy, and thus less uncertainty, than
independent events. This difference is, in fact, equal to the mutual
information or relative entropy of the two events.

In this framework, information is processed via channels with
limited capacity. The channel capacity is the upper bound on the
amount of information that can be reliably transmitted (per unit
time) with some arbitrarily small error probability. The entropy
rate of a given channel is the average information transmitted
per unit time. Specifically, it is the time density of the average
information in a stochastic process. Finally, channel switching
and channel selection are also essential, and there should be
performance costs associated with these processes.

Entropy can be used to quantify both low- and high-level
uncertainty. In digital computing, a bit is a binary digit, taking
a value of either 0 or 1, as a basic unit of information storage
and communication. The bit has been used to model uncertainty
at the neuronal level (e.g., Quian Quiroga and Panzeri, 2009). In
Shannon’s information theory (Shannon, 1948), entropy can also
represent higher-level uncertainty associated with selection of, for
example, letters or words in a message.

INFORMATION THEORY IN COGNITIVE SCIENCE AND NEUROSCIENCE
Information theory has a long and distinguished role in cogni-
tive science and neuroscience. The “cognitive revolution” of the
1950s, as spearheaded by Broadbent (1958) and Miller (1956),
was highly influenced by information theory. Subsequent to the
publication of Shannon and Weaver’s book on information the-
ory (Shannon and Weaver, 1949), many psychological studies
demonstrated that RT in a key-press task is linearly related to the
amount of information transmitted from the stimulus to the sub-
ject (Hick, 1952; Hyman, 1953) (see Attneave, 1959 for a review).
Hick’s Law (Hick, 1952), for example, states that RT is a logarith-
mic function of the number of response alternatives, implying
a linear relationship between RT and input information in bits.
However, the use of these kinds of models was complicated by
experiments which showed that estimates of information pro-
cessing capability differed depending on the response paradigm
(Posner, 1966). With the development of cognitive psychology
(Neisser, 1967), interest in relating information theory and RT
waned as more emphasis was given to specific mental operations
involved in task processing (e.g., Sternberg, 1969). As a result,
quantitative analyses of the relationship between mental opera-
tions and the amount of information to be processed have not
been fully developed.

With the development of neuroimaging techniques and theo-
ries (Posner and Raichle, 1994), it has become possible to specify
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the relationship between information quantities and brain activa-
tion, allowing us to fully study cognitive control of information
processing. Two earlier papers speak directly to uncertainty, pre-
dictability and surprise in the hippocampus (Strange et al., 2005;
Harrison et al., 2006) using fMRI. Other early examples include
work on redundancy and efficiency (e.g., Barlow, 1961) culminat-
ing in notions like the principle of maximum mutual information
or information transfer (e.g., Linsker, 1990). Over the past decade
or so, this information theoretic approach to understanding per-
ception and action has been cast in terms of Bayesian inference.
One example is the free energy principle that has been used to
account for a wide range of perceptual, attentional and behavioral
faculties (Friston and Stephan, 2007). The free energy formula-
tion is important here because the variational free energy is a
proxy or bound on informational surprise (and the time aver-
age of this surprise is average uncertainty or entropy). This
means that brain systems which minimize free energy serve to
reduce surprise and average uncertainty (Friston and Stephan,
2007; Friston, 2010; Friston et al., 2012). There are a number
of schemes that have been proposed to minimize average uncer-
tainty (free energy). The most popular and neuronally plausible
scheme is known as Bayesian filtering or predictive coding (e.g.,
Bastos et al., 2012). In the setting of cognitive control and deci-
sion theory, this quintessentially information theoretic approach
makes some strong predictions about the functional anatomy of
choice behavior that highlights the role of systems like the ACC
(and prefronto-striatal loops) in minimizing surprise. We will see
examples of this later.

INFORMATION ESTIMATES OF CONDITIONS IN TASKS INVOLVING
COGNITIVE CONTROL
Examining uncertainty across different paradigms used to study
cognitive control, at both the individual event and event sequence
levels, will lead to a fundamental understanding of cognitive
control and its related brain activity (Koechlin et al., 2003;
Yoshida and Ishii, 2006; Koechlin and Hyafil, 2007; Koechlin and
Summerfield, 2007; Badre, 2008). Studies of cognitive control
employ tasks in which information content, frequency of appear-
ance, or processing rate are manipulated. These quantities map
directly to entropy, surprise, and channel capacity respectively. I
will show how these values can be estimated from cognitive con-
trol tasks that involve competition between stimulus or response
dimensions, that rely on infrequent events, and that require
increasingly complex mental algorithms.

In the most commonly used cognitive control tasks, such as
color Stroop and flanker tasks, the difference between conditions,
usually attributed to cognitive load or conflict, can be defined by
a difference in relative uncertainty. The conflict effect generated
by an interfering dimension, e.g., from the word meaning in a
color-word Stroop task (MacLeod, 1991; MacDonald et al., 2000;
Fan et al., 2003), from the flankers in a flanker task (Eriksen and
Eriksen, 1974; Cohen and Shoup, 1997; Botvinick et al., 1999;
Casey et al., 2000; Fan et al., 2003), or from a global or local
feature in a global/local selective attention task (Weissman et al.,
2003) can be estimated as an uncertainty difference of up to 1 bit
between conflict and no-conflict conditions. In the color Stroop
task, entropy can be calculated from the number of possible

responses. This level of uncertainty is not the same across neu-
tral and incongruent conditions. In the neutral condition, the
word meaning does not interfere with the color of the word, and
only one response can be mapped to each stimulus. However, in
the incongruent condition, the word meaning is inconsistent with
the color of the word. This incongruency increases the number of
possible responses mapped to each stimulus to 2, and corresponds
to an increase in entropy of 1 bit. This difference is often measured
as a RT difference of ∼100 ms. However, if interference from the
word is suppressed by visually blurring the letters or some kind of
manipulation (e.g., Raz et al., 2002, 2005), the relative uncertainty
difference should be less than 1 bit.

For flanker tasks, let 0 and 1 represent left and right point-
ing arrows, respectively. Then, congruent trials are represented
as 00000 and 11111. Incongruent trials are represented as 11011
and 00100. The underlined center digit is the target. Because
of information reduction (Posner, 1964) or perceptual group-
ing (Wagemans et al., 2012) even without attention (Moore
and Egeth, 1997), arrows pointing to the same direction can be
grouped into reduced representations as 0 or 1 and 10 or 01. If
subjects can filter out the irrelevant flanker digit, the predicted
uncertainty for the congruent and incongruent conditions is the
same 1 bit, with no difference between conditions. However, if
subjects cannot filter out the flanker, each stimulus in the incon-
gruent condition indicates an additional possible response, and
increases the uncertainty to 2 bits. Then, the difference between
the incongruent and congruent conditions is 1 bit. Top-down
attentional control can be used to suppress the flankers, although
experimentally the suppression is imperfect and does not occur
on every presentation. Therefore, the average uncertainty differ-
ence between the incongruent and congruent conditions should
be less than 1 bit. The corresponding RT difference is typically
between 50 and 150 ms, with some exceptions associated with size
and shape of the arrows, distance between flanker and target, or
procedural variations (Weekes and Zaidel, 1996).

The central aspect of these paradigms is interference between
the prior or prepotent response and responses called for on
the basis of sensory evidence. The ensuing conflict (uncertainty
or high entropy over plausible responses) can be seen under a
Bayesian perspective. In other words, if we associate the prepo-
tent response with a prior distribution, the posterior distribution
(given incongruent sensory cues) will induce a high entropy dis-
tribution over possible responses associated with conflict. One
can see clearly how the use of interference between priors and sen-
sory likelihood provides an elegant paradigm to experimentally
manipulate levels of conflict in this framework.

Paradigms investigating the oddball effect, Go/No-Go perfor-
mance, or task switching involve examining responses to a stim-
ulus type with a low probability of occurrence in a series of high-
probability events. The amount of uncertainty to be processed
in these tasks can be estimated using the surprise and entropy
equations. For a Go/No-Go task, assume that probabilities for
Go and No-Go trials are 0.80 and 0.20, respectively. The surprise
(Equation 2) for Go and No-Go trials can then be computed
as 0.32 and 2.32 bits. Therefore, the difference in information
conveyed by the occurrence of Go and No-Go events can be quan-
tified as the 2-bit difference between these two surprise values.
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Now assume that there is an additional condition where the prob-
abilities for Go and No-Go trials are both 0.50. The difference in
entropy between these two conditions (sequences) can then also
be examined (Equation 1). The entropy for the former condition
is approximately 0.70 bits, and is 1 bit for the latter. The ACC
and AI activation defined by a No-Go > Go contrast (e.g., Schulz
et al., 2004) may be related to the 2 bit increase in surprise instead
of the usual explanations of inhibitory or response control.

In one type of task switching study, participants are asked to
alternate between performing two tasks. On the trials when the
task is switched, participants show increased RT and decreased
accuracy. The frequency of switch trials is usually much lower
than non-switch trials (e.g., in Dove et al., 2000). Recall that
based on Equation 2, low probability of occurrence is associated
with a large surprise value. Even if the number of trials for each
task are equal (e.g., in Rushworth et al., 2002), or the order of
the task blocks is unpredictable (Yeung et al., 2006), the switch
trials themselves are infrequent and the effects for the first few
trials after switching can be explained by the increase in surprise,
rather than the switch between tasks per se. In addition, channel
switching (e.g., alternating left and right responses, compared
to repeating one response) and selection (e.g., changing the
response from auditory to visual modality) should also be related
to a performance cost.

In addition to uncertainty due to dimensional competition in
the stimuli or manipulations of stimulus frequency, there is also
a need to consider uncertainty due to the algorithms of mental
operation for tasks that involve higher level stages of uncertainty
processing (Bach and Dolan, 2012), such as the majority function
task (MFT, Fan et al., 2008a, 2014; Wang et al., 2011). In this task,
participants are shown a number of left/right arrows and asked
to indicate the direction in which the majority of the arrows are
pointing (Figure 2A). Set size (1, 3, or 5 arrows) and congruency
(the ratio of the number of left/right arrows) are varied across and
within blocks of trials, respectively. A majority function can be
computed that outputs 1 if and only if more than half the inputs
are 1s. For example, given three input bits x, y, and z, the major-
ity can be computed based on the formula majority(x, y, z) =
(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z) (Wang et al., 2011). In a flanker task,
the center arrow and the surrounding arrows are explicitly defined
as target and task-irrelevant distracters. However, in the MFT, all
arrows displayed in a set are possible task-relevant. Although the
input information to be processed varies across conditions, the
response is always only 1 bit (two alternatives, left/right). Using
RT as a measure of cognitive control, the information entropy
based on different searching algorithms was estimated. RT was
best predicted by a grouping search algorithm involving sam-
pling and resampling of the inputs to find a coherent majority
sample, compared to alternative algorithms (i.e., exhaustive or
self-terminating search) (Fan et al., 2008a). The entropy esti-
mates are 0, 1, 2.58, 1.58, 2.91, and 4.91 bits corresponding to
1:0, 3:0, 2:1, 5:0, 4:1, and 3:2 ratio conditions, and these estimates
correspond to an increase in RT (Figure 2B).

The uncertainty of the information to be processed is encoded
by the grouping search algorithm rather than the outcome. Let
us assume that human subjects apply this grouping sampling
strategy by searching for a congruent sample with a majority

grouping size (e.g., 1, 2, and 3 for set size 1, 3, and 5 respec-
tively). For set size 1, only 1 arrow needs to be scanned. For set
size 3, if all 3 arrows point in the same direction, only 1 group-
ing attempt needs to be made with 2 arrows being scanned; and if
only 2 arrows point to the same direction, on average there will be
1 successful grouping out of every 3 attempts. Therefore, 6 arrows
need to be scanned, which is the product of 3 grouping attempts
and group size of 2 arrows. Similarly, for set size 5, on average 3,
7.5, and 30 arrows need to be scanned, respectively, for the con-
ditions in which 5, 4, or 3 arrows point to the same direction,
because on average 1, 2.5, 10 grouping attempts will be needed to

FIGURE 2 | The majority function task and reaction time as a function

of information entropy. (A) In this task, arrows with set sizes of 1, 3, or 5
are randomly presented at 8 possible locations arranged in an octagon
centered on a fixation cross. The arrows point either left or right, and are
presented simultaneously. The participants’ task is to indicate the direction
in which the majority of arrows point. For example, if three arrows are
presented, and two point to the left and one to the right (see the “2:1”
panel in the “Set size 3” column), the correct response should be “left.”
The eight circles illustrate the locations and are not displayed during the
experiment. The label for each of the 6 conditions is the ratio of the
numbers in each category. (B) Reaction time (RT) as a function of
information entropy (estimated based on a group search strategy).
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reach a congruent group. If we use the majority group size as the
information unit, assuming that each sampled group is equivalent
to one unit of information, the information to be processed is logg

(s), where the base g represents the group size and s is the num-
ber of arrows to be scanned. To convert this measure to bits (i.e.,
from base g to base 2), it is multiplied by log2 (g). Therefore, the
computational load is log2 (g) • logg (s), which is equivalent to
log2 (s). The sensory information in the MFT may not automati-
cally accumulate over time, as in temporal integrator models (see
Kayser et al., 2010; Bach and Dolan, 2012) based on the Newsome
motion coherence task (Newsome et al., 1989; Kiani and Shadlen,
2009).

BRAIN NETWORKS INVOLVED IN COGNITIVE CONTROL
THE INVOLVEMENT OF THE ACC IN UNCERTAINTY PROCESSING
After quantifying the uncertainty under different conditions in
a range of tasks used to study cognitive control, I attribute dif-
ferences in RT and error rate across conditions in these tasks to
changes in uncertainty. I also attribute task-related differences
in ACC activity to these uncertainty differences. The ACC is the
anterior portion of the cingulate gyrus, and is located around the
genu and anterior third of the corpus callosum. It is generally con-
sidered to be a frontal limbic neocortical field and is connected
with the prefrontal and parietal cortices, the primary motor cor-
tex, and the frontal eye fields (FEF). It also receives substantial
input from midline and intralaminar thalamic nuclei, and from
the amygdala (Vogt and Pandya, 1987). All efferents and affer-
ents to and from the ACC travel via the cingulum bundle (Vogt
and Gabriel, 1993). Coupled with other limbic and neocortical
areas such as the AI, basal ganglia (BG) structures, the fron-
toparietal regions including the prefrontal cortex, and the parietal
cortex, the ACC plays a crucial role in sensation and perception,
executive control of attention (Posner and Petersen, 1990), emo-
tion, social cognition, and response selection, preparation, and
execution (Frith et al., 1991; Paus et al., 1993) (Figure 3).

FIGURE 3 | The frontoparietal network and the pivotal role of the ACC

in information processing and response across domains. ACC, anterior
cingulate cortex; AI, anterior insular cortex; BG, basal ganglia structures;
PFC, prefrontal cortex; IPS, areas near and along the intraparietal sulcus.

Numerous tasks with no conflict effect also activate the ACC.
Theories that strongly link conflict detection and resolution to
ACC activity cannot explain these findings (see also Yeung, 2013).
Activation of the ACC (and the AI) is associated with tasks involv-
ing salience and the oddball effect (Seeley et al., 2007; Sridharan
et al., 2008), stimulus presentation frequency (Braver et al.,
2001; Carreiras et al., 2009), violations of repeating patterns or
sequences (Huettel et al., 2002; Ursu et al., 2009), decision making
(Critchley et al., 2001; Ullsperger and von Cramon, 2004; Walton
et al., 2004; Zysset et al., 2006; Behrens et al., 2007; Pochon et al.,
2008), volatility of the reward environment (Behrens et al., 2007),
and voluntary risk taking (Rao et al., 2008). Selection of random
free movements compared to making predetermined movement
is associated with increased regional cerebral blood flow (rCBF)
in the ACC and motor areas (Deiber et al., 1991). The ACC is also
engaged during tasks with a low-frequency of responses (Braver
et al., 2001) and is activated more during random sequences (i.e.,
high uncertainty) than during fixed sequences (i.e., low uncer-
tainty) (Koechlin et al., 2000). Increased ACC and DLPFC and
decreased posterior cingulate cortex (PCC) rCBF are related to
willed action independent of modality (Frith et al., 1991). The
ACC neurons of macaques are more active while searching for
new sequences of visual stimuli than while responding to a repeat
sequence (Procyk et al., 2000). Furthermore, lesions to the ACC
in macaques impair the ability to integrate current and past infor-
mation to guide behavior (Kennerley et al., 2006). In all of these
studies, the task conditions involve manipulations of uncertainty
(Platt and Huettel, 2008; Rushworth and Behrens, 2008), possibly
at different processing levels (Bach and Dolan, 2012).

Although ACC activity has also been linked to error processing
(Kiehl et al., 2000), the ACC is activated in tasks involving pro-
cesses beyond error detection. It is activated by stimulus novelty
(Berns et al., 1997), by the violation of the regularity of stimulus
sequences without subject awareness (Ursu et al., 2009), under
conditions where errors are most likely to occur (Carter et al.,
1998; Braver et al., 2001), and during error evaluation (Magno
et al., 2006). Taken together, all these studies imply a consistent
relationship between ACC activity and uncertainty, rather than
errors per se.

Task-related increases in the effective connectivity of the ACC
have been identified using fMRI time-series data. One study
showed that the ACC modulates Heschl’s gyrus and superior tem-
poral gyri in an auditory oddball task, and influences the striate
cortex in a visual oddball task (Crottaz-Herbette and Menon,
2006). This study supports the theory that the ACC exerts cog-
nitive control by enhancing the processing of sensory signals for
target stimuli to facilitate further processing. It further extends
the finding of increased task-related synchronous activity between
the caudal ACC and the primary and supplementary motor areas,
supporting the hypothesis that the ACC directs cognitive con-
trol by modulating activity in diverse cortical regions (Posner and
Raichle, 1994).

This enhancing suggests that the ACC is in a position to nuance
the conflict by changing the entropy or uncertainty of choice
probabilities. Mathematically, this corresponds to changing the
precision of beliefs about which option is chosen. A simple way of
seeing this is to consider the ubiquitous softmax response model
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of some value function—here the probability of making a par-
ticular choice. The softmax parameter known as precision or
sensitivity sets the precision or fidelity of the choice by reducing
the entropy of the conflict. In other words, a high precision will
make the most likely option much more likely relative to com-
peting options thereby minimizing uncertainty. Notice that this
enables the brain to control its own expected uncertainty through
optimizing the precision of beliefs. It may be that the ACC plays a
special role in this important aspect of optimally reducing uncer-
tainty (but see below). Indeed, current formulations of surprise or
free energy minimization focus on interactions between the pre-
frontal cortex and striatum in optimizing the precision of beliefs
about options or policies, where it is possible that the precision
is signaled by neuromodulatory transmitters such as dopamine.
Crucially, the descending connections from the ACC may play
a pivotal role in optimizing the precision and thereby reduc-
ing uncertainty about future choices to an optimal level. This
framework can be cast in terms of free energy minimization as
described in the paper on the anatomy of choice by Friston et al.
(2013).

A GENERAL ROLE OF THE ACC IN INFORMATION PROCESSING SPEED
Animal and human lesion studies have demonstrated evidence
arguing against the necessity of the ACC in conflict processing.
Lesions of the ACC and DLPFC in monkeys have shown no mod-
ulation of the magnitude of the conflict effect, suggesting that this
effect may also be mediated by other brain structures (Mansouri
et al., 2007). Humans with ACC lesions do not exhibit measur-
able current-trial conflict processing deficits (Fellows and Farah,
2005; di Pellegrino et al., 2007) (but do show a reduced context
effect of the previous trial, Sheth et al., 2012). Two human lesion
studies with relatively large sample sizes have also failed to find
an effect of ACC damage on the conflict effect (Vendrell et al.,
1995; Stuss et al., 2001). If the ACC is involved in conflict pro-
cessing, then why do conflict effects not increase following ACC
damage?

Contrary to existing theories that conflict processing is the
main role of the ACC in cognitive control, I theorize that the
ACC plays a general role in information processing speed, which
is as a function of uncertainty. A typical assumption in stud-
ies of cognitive control is that the conflict effect and overall
RT are orthogonal. However, a significant positive correlation
between the magnitude of the conflict effect and overall RT can
be consistently observed (Fan et al., 2002, 2007a, 2009; Wang and
Fan, 2007). Further, relatively long overall RT has been found
in patients with schizophrenia when performing tasks requiring
conflict processing (Krieger et al., 2005), and is selectively associ-
ated with a greater conflict effect in patients with schizophrenia
(Wang et al., 2005) and in children with dyslexia (Bednarek et al.,
2004). This significant correlation may indicate that common fac-
tors or brain structures affect both conflict processing and overall
response speed.

Some animal and human lesion studies have used ratio scores
to index the conflict effect, calculated as the RT difference between
conflict and no-conflict conditions divided by overall RT (or RT
under no-conflict conditions) to partial out effects related to
overall response speed. If the size of the conflict effect depends

on the overall RT, however, this normalization would mask
real differences in the conflict effect between groups. Human
lesion studies have shown that the overall RT of subjects with
ACC lesions is significantly longer than that of control subjects
(Vendrell et al., 1995; Fellows and Farah, 2005; di Pellegrino et al.,
2007). Lesions in the ACC did not produce selective changes
in the conflict effect, but increased RT in both conflict and
no-conflict conditions. ACC plays an important role in cogni-
tive control demands, as indexed by RT [cf. the “time on task”
account (Grinband et al., 2011) for a related but different theory].
Experiments that do not manipulate conflict show ACC activ-
ity when there is an increase in RT. Conflict-related theories fail
to account for this evidence. The challenges to current theories
of cognitive control can be addressed by the information theory
account.

BEYOND THE ACC: THE FRONTOPARIETAL NETWORK FOR COGNITIVE
CONTROL
The ACC contains a class of neurons called spindle neurons
or von Economo neurons (VENs). VENs are very large, bipo-
lar, vertical fusiform cells and have only been found in humans
(Nimchinsky et al., 1995), great apes (Nimchinsky et al., 1999),
some cetacean species (Hof and Van der Gucht, 2007), and
elephants (Hakeem et al., 2009). VENs are most abundant in
humans and are primarily found in clusters in layer Vb of the
ACC, with highest densities in areas 24b and 24a. They are also
found in a cytoarchitectonically distinct region located in the
AI (Von Economo and Koskinas, 1925; Nimchinsky et al., 1995,
1999). VENs are projection neurons approximately 4.6 times the
size of neighboring pyramidal neurons. The localization of VENs
to specific functional regions suggests an integral role of these
neurons in corresponding functions. Based on their laminar loca-
tion, VENs are likely to have widespread connections with diverse
parts of the brain (Allman et al., 2001). Because of their poten-
tial connectivity and their large axonal diameters, VENs are well
suited to provide a fast relay of signals derived from information
processed in the ACC to other prefrontal and temporal limbic
areas. Thus, they can support rapid integration of input from
spatially distinct functional regions as well as a quick assessment
of unpredictable, rapidly changing, and complex inputs (Allman
et al., 2005; Fan et al., 2011).

Recent research has started to reconsider ACC function
within a larger network underlying cognitive control. This fron-
toparietal network includes the FEF, supplementary eye field,
ACC and AI, middle frontal gyrus (MFG), the intraparietal
cortex (IPC) near and along the intraparietal sulcus (IPS),
and superior parietal lobule (Hopfinger et al., 2000; Kastner
and Ungerleider, 2000; Corbetta and Shulman, 2002; Rossi
et al., 2009). It is worth noting that the frontoparietal net-
work’s implementation of cognitive control may fulfill cer-
tain properties of modular systems (Fodor, 1983; Barrett and
Kurzban, 2006), with distinct regions having their own specialized
function.

Although the ACC and AI are commonly co-activated, they
may have a functional dissociation with regards to uncertainty
processing. The ACC can be considered the limbic motor cortex
and the insular cortex can be viewed as the limbic sensory cortex
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(Craig, 2009). In this framework, the ACC plays an important
role in executive control (voluntary, top-down) of responses.
The AI, onto which highly processed sensory inputs converge
(Flynn et al., 1999), integrates those inputs (automatic, bottom-
up) in relation to the uncertainty of the bodily feeling state
(Singer et al., 2009). Although not discussed in this article,
the functional commonalities and specifications of the subdi-
visions of the ACC (Bush et al., 2000; Fan et al., 2008a; Nee
et al., 2011) and AI (Kurth et al., 2010), and the dissocia-
tion between them (Gu et al., 2010; Medford and Critchley,
2010; Menon and Uddin, 2010; Sterzer and Kleinschmidt, 2010)
also need to be considered to fully understand their roles
in the network. The functional dissociation of the ACC and
AI has recently been demonstrated under task conditions dif-
ferent from those mentioned here (Gu et al., 2010, 2012,
2013b).

The roles of other regions in the frontoparietal network are
also crucial to cognitive control. It has been suggested that the
frontoparietal regions of the FEF and IPS are related to both
top-down, goal-driven and bottom-up, stimulus-driven aspects
of cognitive control (Knight, 2007), and that the IPS modulates
the activity of regions related to early visual inputs (Rossi et al.,
2009). The lateral intraparietal area (LIP) of the IPS, the FEF,
and the superior colliculus (SC) contain spatially restricted visual
receptive neurons selectively responsive to behaviorally relevant
objects of visuospatial input. It has been proposed that these areas
encode the salience of objects with attentional weight (Gottlieb,
2007).

I propose that all key regions in the frontoparietal network
activate as a function of demands for cognitive control, for both
bottom-up and top-down information transmission and modu-
lation, with their specific roles similar to those described in recent
work (Anderson et al., 2008; Wang et al., 2010). The notion that
the ACC is involved in the modulation and selection of options
(or their underlying cues) is important in relation to the informa-
tion theoretic characterization based upon precision. Note that if
the ACC is involved in optimizing precision, then the ultimate
effects have to be of a multiplicative or modulatory sort—in the
sense that the precision of beliefs does not change their content
just their influence.

I theorize that the frontoparietal network (ACC and AI being
key structures in this system) for cognitive control facilitates
rapid information processing and transmission under condi-
tions of uncertainty. This system is involved in the cogni-
tive control of information transmission and integration across
specialized cortical and subcortical regions. The ACC and AI
consistently process the uncertainty that is essential to the ini-
tiation of cognitive control (Fan et al., 2014), thus largely
determining the efficiency of information processing. Greater
activation of this system, especially in ACC and AI, is associ-
ated with cognitive control under a high computational load
and a high information processing and transmission rate. In
addition, when the computations in the ACC and AI become
more involved in channel switching and selection, competi-
tion, and high rate transmission of information, there should
be concomitant increased activity and connectivity of the
ACC and AI.

TESTING THE FRONTOPARIETAL NETWORK AS AN
INFORMATION PROCESSING ENTITY
Information theory characterizes the uncertainty of a communi-
cation system which has three essential parts: information source,
channel, and destination (Shannon, 1948), each of which can be
affected by noise. I conceive of the cognitive processing stream as
such a communication system where the frontoparietal network
serves as an integrative interface between input and response.
Inputs to the processing stream from information sources are
selectively routed through channels to one or several output desti-
nations under the guidance of the cognitive control. This interface
dynamically handles information uncertainty and prioritizes the
transmission of one or several specific sources to output desti-
nations for further processing. It may be implemented through
the dynamic interconnections between the cortical and subcorti-
cal structures linked to the frontoparietal network. If any brain
regions are such an information-processing entity, I propose that
it must demonstrate three properties: functionality, specificity,
and capacity. I will present some preliminary evidence that the
frontoparietal network exhibits these properties.

Functionality refers to the increase in activity of brain regions
corresponding to an increase in uncertainty. Early information
theory studies demonstrated a linear relationship between RT
and information entropy (Hick, 1952; Hyman, 1953), indicat-
ing higher cognitive load with higher entropy. Therefore, the
activity and connectivity of the frontoparietal network in the
cognitive control of uncertainty processing should have a posi-
tive monotonic relationship with uncertainty, which is reflected
by computational load, determined by both the amount of
input information and the algorithms of the mental operations
involved. In a recent study, the neural activity of the frontoparietal
network was examined as a linear function of information uncer-
tainty (Fan et al., 2014). A positive association between activity
in those brain regions and uncertainty as measured by the MFT
was demonstrated (Figure 4), supporting the functionality of the
frontoparietal network in cognitive control. In contrast, regions
of the default mode network were deactivated as a function of
uncertainty. Although these regions may play an important role
in cognitive control, they do not exhibit the property of func-
tionality and thus do not process uncertainty as the frontoparietal
network does.

Specificity refers to the modality-independence of the brain
regions in the processing of uncertainty when cognitive control is
needed. In another recent study, the specificity of the frontopari-
etal network with regard to information uncertainty was tested
in a visual and an auditory fMRI experiment (Lee and Fan, in
preparation). Participants were given sequences of single stimuli
that came from a set of two classes. In the visual experiment, the
stimuli could be left- or right-pointing arrows; in the auditory
experiment, the stimuli could be low- or high-frequency tones.
This study made no manipulations of conflict, and only varied
the relative probability of the presentation of stimulus classes.
Increases in activity of the frontoparietal network were associated
with increases in entropy and surprise, and this specificity of the
neural response was the same for both presentation modalities.

Finally, capacity refers to the maximum amount of informa-
tion a channel can transmit per unit time. The limited capacity
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FIGURE 4 | Brain activation as a function of information uncertainty.

(A) Activation (in red) and deactivation (in blue) as a function of uncertainty
(in bits). (B) Plot of beta value as a function of uncertainty. (C)

Hemodynamic response as a function of uncertainty. TR = 2.5 s.

view was central to early views of attention that were influenced
by information theory (Broadbent, 1958) and I similarly pro-
pose that the frontoparietal network has limited capacity. When
the required processing rate exceeds the peak limitation, or when
the power of noise in the channel increases, processing efficiency
(as measured by both RT and accuracy) decreases. I hypothe-
size that there is a central bottleneck that determines the capacity
of cognitive control. Based on Shannon’s estimation of informa-
tion processing in reading, cognitive control may have a capacity
with an upper limit of ∼50 bps. This may be an overestimation
because language contains redundant information. Establishing
this upper limit is an open research question.

COMPARISONS WITH OTHER ACCOUNTS OF COGNITIVE
CONTROL
To justify the validity of the information theory account of cog-
nitive control, that is, the extent to which the concepts of this
account can explain the empirical data, I will compare and con-
trast this account to other popular accounts of cognitive control
in the literature.

THE CONFLICT AND CONTEXT EFFECTS
The ultimate goal or the function of cognitive control is to reduce
uncertainty. The information theory account is a general account
of cognitive control. As established earlier, conflict is only one
type of uncertainty increase, and this account extends its predic-
tions beyond the accounts of conflict theories. Popular models

strongly relating the ACC to conflict effects have limitations in
their ability to explain the underlying information processing,
and present only a special case of the information theory account.

The discrepancy between human studies showing conflict-
related ACC activation and monkey studies failing to find ACC
response to conflict monitoring has been attributed to dif-
ferences of methodology used in different species [e.g., ACC
and subdivision functional neuroanatomical differences, blood-
oxygen-level dependent (BOLD) signal of population neurons
vs. single-unit activity recording, task/response differences] (Cole
et al., 2009). Other alternative interpretations have also been
proposed (Schall and Emeric, 2010), because neurophysiological
studies of the macaque ACC have shown consequence (error and
reward) related signals but no conflict-monitoring related activity
enhancement (Ito et al., 2003; Nakamura et al., 2005; Emeric et al.,
2008). However, the structure of the tasks in terms of probabili-
ties of specific events has not been systematically examined. ACC
neurons have been shown to encode reward probability informa-
tion at both choice and outcome epochs (Kennerley et al., 2011).
In another study also using a probabilistic choice task (Hayden
et al., 2011), dorsal ACC neurons of macaques showed enhanced
response to the surprise from the outcome regardless of valence,
even though there was no explicit conflict. These results support
the idea that ACC activation in human neuroimaging studies is
associated with the surprise resulting from less frequent condi-
tions (e.g., error, with low probabilities). Therefore, comparing
a high probability event with conflict to a low probability event
without conflict, the ACC neurons may not fire more under
the former condition, because firing rate increase depends on
whether there is an increase in entropy.

The “context effect” (Gratton et al., 1992), or the conflict
adaptation effect (Mayr et al., 2003), describes the reduction
in RT to an incongruent flanker trial following another incon-
gruent flanker trial. The effect can be explained as a reduction
in uncertainty through two possible mechanisms. One involves
an increase in cognitive control triggered by the context of the
previous trial. In this situation, the increased cognitive control
effectively filters out the flankers and reduces the uncertainty from
the flankers. Another attributes the reduction in RT to exact rep-
etitions of stimuli. In this case, there is no change in context or
response, which corresponds to a low entropy scenario.

REINFORCEMENT LEARNING AND COGNITIVE CONTROL
The information theory account is consistent with the account
that ACC involves reinforcement learning and control in support-
ing the production of goal-directed action (Alexander and Brown,
2011), and the two make similar predictions across several dif-
ferent experimental paradigms. However, the information theory
account attributes the activation of the frontoparietal network
to the fundamental increase in uncertainty, while reinforcement
learning accounts attribute the same activation to differences
between a prediction signal and the actual outcome.

The predicted response outcome model of the ACC (Alexander
and Brown, 2011; Nee et al., 2011; Brown, 2013) builds on
the dominant conflict monitoring model (Carter et al., 1998;
Botvinick et al., 2001) to account for ACC activation when there
is no apparent conflict or error. It adds a key function of detecting
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not only the error likelihood but also the absence of an expected
outcome (Brown and Braver, 2005). The model generates a large
signal when a predicted event fails to occur. Situations that
elicit this discrepancy also are high in surprise, due to the pres-
ence of low-probability events, and so this model makes similar
predictions to the information theory account under these con-
ditions. The predicted response-outcome model involves a single
comparison between prediction and outcome per trial. An algo-
rithm performing multiple comparisons best accounts for the
data from the MFT, and the information theory account explains
these multiple comparisons through activity in the frontoparietal
network.

A different reinforcement learning model of the ACC (Holroyd
and Coles, 2002) focuses on error-related negativity (ERN).
The ERN generated in the ACC is highly sensitive to vari-
ous sources of error information and depends on the mes-
encephalic dopamine system. It is not elicited by the error,
but rather by error detection and the use of errors to prevent
future errors. If we consider the ERN as a result of uncer-
tainty during reinforcement learning, which is supported by the
observation that the ERN can be also elicited with a correct
response, the reduction of uncertainty will eventually bring the
uncertainty to a stable state (i.e., error rate), and the uncer-
tainty of that state can be quantified by surprise. Underlying the
conflict and action selection models is the uncertainty require-
ment for cognitive control, independent of the source of the
uncertainty.

Error and prediction error-related ACC activity is due to the
increased surprise value of a trial or conditions that lead to
more errors, rather than the error per se. It would be ideal to
separate the effect of increased uncertainty from error-related
effects. However, it is almost impossible to find a condition of
high uncertainty that elicits perfect performance. In addition,
the presence of an error or an unexpected outcome itself is usu-
ally a low probability event, which constitutes a high surprise
value (Equation 2) and thus activates ACC and AI. Recently, the
dorsal ACC has been proposed to integrate information about
reward and costs in order to estimate the expected value of control
(Shenhav et al., 2013). However, given that simple manipula-
tion of stimulus or response probability can activate the ACC,
this activity is related to the general computation of uncertainty,
rather than specifically for the estimation of the expected value of
control.

As described, information theory quantifies uncertainty at
the sequence and event type level using entropy and surprise
values, respectively. However, prediction and evaluation at the
individual trial level, independent of context, and the associated
information processing in the ACC should also be considered.
It has been argued that ACC activation reflects not only the
overall likelihood of an error in a trial (which can be quan-
tified as surprise) but also the within-trial difference in the
need for control (Anderson et al., 2008). Recently, it has been
shown that the ACC predicts trial-by-trial probabilistic expec-
tation of stop trials and response errors in the stop-signal task,
based on a Bayes-optimal sequential estimation (Ide et al., 2013).
This work further demonstrates that the response of the ACC is
dynamic.

SALIENCE AND THE SALIENCE NETWORK
Salience is a feature of individual objects relating to their appear-
ance frequency within a context or sequence of objects, and so
can be quantified by its surprise value. In Bayesian schemes the
optimization of precision is seen as an attentional process; how-
ever, salience is a bit more complicated. Operationally, salience
may be better conceived as a sampling of information that
reduces uncertainty. This is fundamentally different from reduc-
ing the uncertainty over options—it reduces the uncertainty over
states of the world. Under the notions of Itti and Baldi (2009)
about Bayesian surprise, salience is quintessentially a measure
of the relative entropy or reduction in uncertainty. Something
that is surprising is not in itself salient. It is salient by virtue
of the fact that it could resolve uncertainty about competing
explanations.

The salience network has been proposed to explain the func-
tion of the ACC and AI in a new theoretical framework (Menon
and Uddin, 2010). It is surprise that drives the activation of the
ACC, AI, and associated regions in the frontoparietal network for
cognitive control. New models of the ACC have implicitly applied
information theory principles. For example, perceived error like-
lihood is associated with uncertainty but not response conflict.
The event-level surprise is positively associated with the predictive
error signals from the single-trial level. Decrease of ACC activity
during trial-and-error learning is due to reduction of uncertainty.
The quantification of salience can also be extended to affective
and social domains (Fan et al., 2011). For example, fear is a low
frequency event in daily life and has a high surprise value when it
occurs.

COGNITIVE CONTROL ARCHITECTURE
How is cognitive control achieved? In this section, I will exam-
ine the levels of cognitive control from Marr’s (1982) point of
view of complex systems and then argue that the implemen-
tation of cognitive control occurs via attentional functions and
networks involving frontoparietal regions of the brain for uncer-
tainty reduction.

LEVELS OF INFORMATION PROCESSING FOR COGNITIVE CONTROL
To understand the architecture of cognitive control, it is use-
ful to consider Marr’s model of complex systems (Marr, 1982),
which posited three levels of analysis. The first level is the com-
putational theory, which characterizes the problem that a system
solves and the principles by which its solution can be computed
from the available inputs in natural environments. The computa-
tional goal of cognitive control is to optimize uncertainty so that
it provides a sufficiently precise action selection and yet properly
accommodates irreducible uncertainty about what is knowable in
the conflict situation. It is certainly the case that minimizing free
energy is predicated on minimizing uncertainty or surprise. The
second level is for the representation and algorithm. It describes
the procedures executed to produce this solution and the repre-
sentations or data structures over which the algorithms operate.
The coding of inputs and the potential algorithms performing
the uncertainty reduction, e.g. in the MFT, the exhaustive search,
self-terminating search, and the grouping search algorithms (Fan
et al., 2008a), belong to this level. The third level is the hardware
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implementation that specifies how the algorithms and data struc-
tures at the second level are instantiated in the circuits of a brain
or a machine. The regions of the frontoparietal network dynam-
ically interact to incorporate the functions of cognitive control,
and by using computational modeling and fMRI studies in tasks
such as the MFT, the hardware implementation of cognitive con-
trol in the brain can be mapped (Wang et al., 2011; Fan et al.,
2014).

In one higher-level cognitive architecture model that involves
adaptive control of thought, the role of the ACC is goal control—
to regulate the internal level of cognition and maintain the task
goal, and to allocate the cortical modules of mental operations
(Anderson et al., 2008). Activity in the ACC reflects the update
of control information. The goal control in the model actu-
ally involves channel switching, to coordinate the interaction of
several relatively independent modules/processes.

THE IMPLEMENTATION OF COGNITIVE CONTROL VIA ATTENTIONAL
FUNCTIONS AND NETWORKS
The human body transmits 11 million bits of information per
second (bps) to the brain, but our conscious mind can only
process a portion of this capacity. For example, reading capac-
ity is estimated as 50 bps, for a typical reading speed of 5 words
per second, assuming an average of 5 characters per word and
roughly 2 bits per character (Information theory: Applications
of information theory: Physiology); visual attention can select
only 30–60 bits of information for processing with each glimpse
(Verghese and Pelli, 1992). Therefore, cognitive control needs
to be involved. Cognitive control is a set of processes that per-
mits adaptive responses consistent with goals and homeostatic
demands to constrain the amount of information that reaches
focused consciousness. Cognitive control is most needed when
there is competition for limited resources and when there is a con-
siderable amount of computation required to determine the most
appropriate input and response.

It is proposed that cognitive control is implemented by com-
putational mechanisms of distinct and integrated attentional
networks which influence information processing for uncertainty
reduction (Mackie et al., 2013) (Figure 5). Attention is defined
as the activity of a set of brain networks of alerting, orienting,
and executive control that influences the priority of computations
of other brain networks for access to consciousness or to out-
put (Fan et al., 2002, 2005; Fan and Posner, 2004). Alerting is for
achieving an alert state (tonic) and the ability to prepare for a sen-
sory signal (phasic). Orienting is for the selection of information
from sensory input and turning attention toward a sensory signal
(reflexive or voluntary, covert or overt). Executive control detects
and resolves conflict and selects one dimension in the presence of
competing information or computation. The coordination of the
attentional networks, with modality-independent executive con-
trol at the top hierarchical level (Spagna et al., in preparation),
functions similar to Normal and Shallice’s supervisory attentional
system (Norman and Shallice, 1986), and dynamically imple-
ments cognitive control in a context-sensitive fashion. It is the
mechanism of so called selective attention to deal with the limited
capacity of information processing via selectivity (Desimone and
Duncan, 1995). This cognitive control architecture is consistent

FIGURE 5 | Cognitive control implemented via attentional functions of

alerting, orienting, and executive control.

with a key principle of the brain (Friston and Stephan, 2007),
with lower regions for sensory input, modulated by alerting
and orienting, and higher regions performing multimodal (or
association) functions coordinated by executive control.

The neurocomputational architecture of cognitive control is
far more complex than what we can plot with a simple flow
chart. An increase in uncertainty is related to an increase of
demand for cognitive control, which activates not only the ACC
and DLPFC, but also distributed regions, such as AI, FEF, and
IPC across the frontoparietal network as a function of uncertainty
(Fan et al., 2014). Additionally, task and modality specific brain
regions and networks should also be modulated by and inter-
act with the frontoparietal network. Further investigation of the
functional specification, e.g., the dissociation of the ACC and AI
(Gu et al., 2010, 2013a) and integration (Dosenbach et al., 2008)
of the cortical and subcortical structures in the frontoparietal net-
work for uncertainty reduction, is needed. This enterprise can
begin with an understanding of the mental algorithms (Fan et al.,
2008a; Wang et al., 2011) underlying mental processing in cogni-
tive control tasks, i.e., cognitive load or task difficulty, and finding
dissociations in regional activity in relation to different aspects of
these algorithms (Fan et al., 2014).

APPLICATIONS OF THE INFORMATION THEORY ACCOUNT IN
NEUROIMAGING AND CLINICAL STUDIES
POTENTIAL ISSUES IN USING COGNITIVE SUBTRACTION
Beyond addressing the limitations of current theories of cogni-
tive control, this information theory account also addresses other
more general issues in the field of cognitive neuroscience. First,
despite the well-accepted concept that the brain is comprised of
information processing entities, there have been few attempts to
quantify this information, which would allow for a quantitative
appreciation of the relationship between the input information
and neural activity in higher-level systems. Second, although
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there is a vast literature on computational fMRI using informa-
tion theoretic constructs and similar computational explanatory
variables from control theory and re-enforcement learning, in
many fMRI studies researchers compare brain activity between
task conditions and make inferences based on the concept and
assumptions of cognitive subtraction. The logic behind these
inferences supposes that a difference in a property of interest
across task conditions accounts for the observed change in neu-
ral activation. However, the amount of information across the
two task conditions is practically never quantified, and could be
an important confounding factor. The difference in activation
between two conditions may actually be due to a difference in
computational load quantified as information entropy, or due to
differences in event probability associated with the surprise. This
may explain why common activation in areas such as the ACC
(and AI) has been found in different studies using various tasks
(Nee et al., 2007; Yarkoni et al., 2011). To address these issues, the
information theory framework is needed to move toward a new
direction of conducting and understanding studies on cognitive
control.

INFORMATION PROCESSING DEFICITS IN PSYCHIATRIC DISORDERS
ACC activation abnormalities have been observed in many psy-
chiatric patient populations (Bush et al., 2003). Various cog-
nitive assays known to reliably and robustly activate the ACC
have been used to demonstrate aberrant ACC activity and ACC-
dependent behavioral performance in patient populations with
psychiatric disorders including those with schizophrenia (Carter
et al., 2001; Kiehl and Liddle, 2001; Heckers et al., 2004; Mulder
et al., 2008; Polli et al., 2008), attention deficit/hyperactivity dis-
order (Swanson et al., 1998; Bush et al., 1999; Durston et al.,
2003; Schulz et al., 2004; Rubia et al., 2005; Mulder et al., 2008),
autism (Rinehart et al., 2001; Gomot et al., 2006; Kennedy et al.,
2006; Luna et al., 2007; Solomon et al., 2008; Fan et al., 2012),
depression (Williams et al., 1996; George et al., 1997), obsessive
compulsive disorder (Bannon et al., 2002; Gu et al., 2008), anxi-
ety (Mogg et al., 1993; Benkelfat et al., 1995; Simpson et al., 2001;
Hirsh et al., 2012) and neurodegenerative diseases (Seeley et al.,
2009; Van Dam et al., 2013). Results from these studies have been
discussed in terms of deficits in mental functions such as con-
flict processing, response inhibition, target/novelty detection, and
error detection. Taken together, these results suggest that a general
disturbance of the ACC affects a range of its information process-
ing functions and, furthermore, that the processing carried out in
this region generally serves as a major bottleneck in terms of task
performance. The current literature, however, lacks a comprehen-
sive model that can explain the findings of various ACC-related
deficits both within and across patient populations. Additionally,
current theories often examine the ACC independently from the
frontoparietal network.

In patients with autism, performance was impaired at a fast
presentation rate in a Go/No-Go task (e.g., Raymaekers et al.,
2004), suggesting that deficits are more detectable under high
information processing rates. Patients with autism also show per-
formance deficits on a version of the continuous performance
task (Corbett and Constantine, 2006), which is a variation of the
Go/No-Go task. These tasks involve an explicit manipulation of

stimulus surprise, but the nature of their response requirements
prevents the measurement of the behavioral effect of entropy.
One particular benefit of the information theory account is that
it lends itself to the development of a series of cognitive tasks
in which information entropy and surprise, computational load,
and processing rate can each be systematically manipulated and
quantified to examine the relationship between these measures
and performance in patient populations (Mackie and Fan, under
review). Following a thorough study of the relationship between
uncertainty and the frontoparietal network, the information the-
ory account of cognitive control may guide the study of the
dysfunction in cognitive control consistently observed in various
patient populations and lead to more nuanced predictions.

OUTSTANDING QUESTIONS AND CONCLUDING REMARKS
OUTSTANDING QUESTIONS
There are some additional outstanding questions that need to
be answered. First, is the goal of cognitive control a complete
reduction of uncertainty, or only to reduce it to a “manageable”
level so that we can react appropriately? I would argue that total
reduction of uncertainty is not adaptive or even optimal. This
may be because a residual degree of uncertainty acts to stimu-
late vigilance, to handle new, unexpected challenges. Reduction
of uncertainty also requires time, and total reduction requires
more time than is feasible in experimental or real-world tasks.
Indeed, free energy formulations of choice behavior place a great
emphasis on the existence of optimal levels of precision (that
may be encoded by dopamine) in nuancing the uncertainty about
choices in conflict situations (i.e., choice under uncertainty). This
suggests that there is indeed an optimal (irreducible) degree of
uncertainty that has to be estimated by systems such as the ACC—
a perspective that may illuminate the functional anatomy of this
region.

Second, how do we demonstrate that ACC activation is related
to the amount of information to be processed, rather than pro-
longed RT per se? Empirically, conditions high in uncertainty also
have high task difficulty and are accompanied by longer RT. ACC
activity related to uncertainty could also be explained simply by
the longer time to make responses in a given task (Grinband et al.,
2011), rather than task conditions. Studies that isolate ACC activ-
ity as a function of uncertainty and hold RT constant are needed
to address this issue.

Third, how can we apply information theory to the study
of higher-order domain-specific information processing? How
can we quantify information processing in other cognitive and
emotional processing domains? Information in Shannon’s formu-
lation is independent of semantic meaning, and depends entirely
on presentation probabilities. However, given the recent focus
on Bayesian formulations, one can recast information theory in
terms of inference that has an explicit representational (semantic)
meaning. This allows us to use the formal constructs of informa-
tion theory to understand behavior in terms of beliefs and infer-
ence. Furthermore, these formal imperatives can be associated
with message passing in the brain using schemes like Bayesian
filtering and predictive coding. If events in a given domain also
differ in their expected probabilities, information uncertainty
could be a viable alternative explanation, one that does not rely

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 680 | 11

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Fan Information theory account of cognitive control

on domain-specific semantic explanations. For example, fear is
often related to activity in the amygdala. However, the contexts
that induce fear are usually unlikely to occur, and activity related
to fear may be attributed to the high surprise resulting from a
low-probability event, or temporal uncertainty (e.g., Herry et al.,
2007). The information theory account may provide the tools
to quantify processing in these higher-level domains. Testing the
interaction of the frontoparietal network with domain-specific
regions, i.e., studying domain-specific modulation of cognitive
control (e.g., Esterman and Yantis, 2010), will ultimately lead to a
more complete understanding of these high-level functions.

CONCLUDING REMARKS
The brain is built to cope with uncertainty (Bach and Dolan,
2012). I believe that uncertainty reduction is the goal of cogni-
tive control and that cognitive control emerges as a high-level
response to information uncertainty, rather than automatic low-
level sensory processes. Information theory lends itself to a quan-
titative analysis of related brain activation, and understanding
the neural bases underlying cognitive control would be a major
achievement in cognitive neuroscience, and has great potential to
inform basic science as well as to provide a template for under-
standing the neural basis of mental disorders. Extending tests of
the account to clinical populations can also reveal new insights.
By conducting lesion studies, we can investigate the necessity of
specific regions in the frontoparietal network for cognitive con-
trol, as well as their roles and interactions within the system (e.g.,
Anderson et al., 2008). In addition, we can apply this account to
patient populations with cognitive control deficits, such as indi-
viduals with autism, in order to better understand the underlying
deficits in terms of uncertainty processing.

The goal of this paper is to advance and examine a general and
quantitative information theory framework that accounts for cog-
nitive control. This account challenges dominant views of ACC
as being important exclusively for conflict monitoring or con-
flict resolution and offers an alternative with a theory relating
uncertainty (or information processing) to ACC activity, as well as
activity in the frontoparietal network. Such re-conceptualization
could help to push the field forward by providing novel theoreti-
cal, methodological, and practical insights. Furthermore, it could
lead to the wider adoption of an information theory approach
in the field of cognitive neuroscience. As pointed out 55 years
ago by Attneave (1959) and reflected in a recent popular sci-
ence book of Gleick (2011), “information theory is not going
to provide a ready-made solution to all psychological problems,”
but, “employed with intelligence, flexibility, and critical insight,
information theory can have great value both in the formulation
of certain psychological problems and in the analysis of certain
psychological data.”
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