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Abstraet

Attention is a complex multilevel system subserved by at least
three inferscting attentional networks in the brain. This paper
describes ¢ muitilevel computational model of attentional
networks, developed in both the symbolic architecture of
ACT-R and the connectionist framework of leabra We
evaluated the model using the Attentional Networks Test and
the simulation results fitled the empirical data well We argue
that developing multilevel compuiationai models helps to link
findings at differens levels

Introeduction

Suppose 4 student 8 was asked to solve the equation “2x + 3
= 9" (Figure 1A), and he used 2 seconds to produce the
answer “x = 3" Both copnitive scientisis X and Y were
interested in understanding how S did it Scientist X
recorded §’s detailed verbal protocol (Figure 1B), based on
which, and other relevant behavioral measures, X
hypothesized the possible knowledge structures underlying
§'s problem solving and devefoped a  symbolic
computational mede] that simulated the process (Figure 1C)
On the other hand, scientist ¥ adopted sophisticaled brain
imoaging lechniques such as electroencephalograph (EEG)
and functional Magnetic Resonance Imaging (IMRI} and
acquired a high-resolution recording of §’s brain dynamics
during problem solving (Figure iD) Based on some well-
estabiished peural computing principles, Y then developed »
biologically realistic connectionist medel to simulaie the
brain activities underlying $'s performance {Figure iE)
Though both models fitted the data well, the two models nre
clearly different While the symbolic model offers a
description of the process with psychological plausibility
and high behaviorsl relevance, (he connectionist model
emphosizes the process’ biological realism and brain
foundations. One question is, do we, cognitive scientists
who endeavor to discover unified theories of cognition,
have justifiable reasons to prefer one to another?

This question and similar others have led o a long
debate in the rather brief history of cognitive seience (e g,
Churchiand & Sejnowski, 1992; Neweli, 1990; Rumelhart
& McClelland, 1986) Recently o BBS (Behavioral and
Brain Sciences) tarpet article wes dedicated to this issue
{Anderson & Lebiere, 2003) The authors adopted a set of
12 criteria, which they called “The Newell Test”, to
systematically compared and contrasted ACT-R, a rule-
based cognitive architecture (Anderson & Lebiere, 1998),

and the connectionist modeling [ramework  Their
conclusion was that both frameworks had great strengths as
well as serious limitations as candidates of the unifted
theory of cognition
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Figore 1. A hypothetical equation-solving problem is
presented in A. Verbal protoco! and brain imaging datn
are presented in B and D Sketches of a symbolic model
and o connectionisi model of task are presented in C
and E.

This is hardly surprising given the inherent complexity
of the human mind itself. It has long been recognized that
the mind is a multileve! construct and can be analyzed at
different lfevels Marr, for example, distinguished and
separated among computational theory, representation and
algorithm, and hardware implementation (Marr, 1982)
Similar distinctions were made by Newell among different
bands of cognitive functions (Newell, 1990} Newell argued
that different bands utilize different basic operators, which
have different time scales More importantiy, different
bands form a hierarchy. Multiple lower fever basic operators
con be combined to form higher fevel basic operators. In
other words, lower leve! operators can be summarized up st
higher level though this summarization may not be linear
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Single level analyses have been the dominam
methodelogy in cognitive science Experimental psychology
and symbolic modeling, for example, largely depend on
controlled experiments and behavioral observation Recent
advances in cognitive neuroscience allow us to directly
observe, with high temporal-spatial resolutions, how an
active brain functions during cognitive performance {Posner
& Raichle, 1994) As a result, biologically realistic ncural
networks modeling has flourished (O'Reilly & Munnkata,

2000) Efforts have also been made to probe the function of

mind at lower molecular levels {ep., Bellugi & George,
2001; Squire & Kandel, 2000) While all these levels of
snalyses tell us important aspeets of the mind, neither of
them alene is adequate to describe the whole picture The
human mind is a compiex entity and may leave shadows at
different levels when it works (Penrose, 1996) Towever, in
order to achieve a unified theory all of the pieces have to be
somehow linked together.

One approach would be to develop so called “hybrid
systems”, which typically combine symbolic and
subsymbolie compenents together (e g, Sun & Alexandre,
1997) We, for example, have developed a hybrid model of
human abductive reasoning by combining a Sear component
(a symbalic architecture) for hypothesis generation and a
conncetionist  component  for  hypothesis  evaluation
{Johnson, Zhang, & Wang, 1997). Although hybrid systems
take advantage of both types of components and can become
quite powerful, they ofien bear little true psychological and
neurophysiofogical significance due o the fact they are
artificiaily assembied systems While it is well agreed that
human cognition involves mechanisms and operations af,
among others, both psychologicel and neuronal networks
levels, simply piecing them together is ad hoc and trivializes
the problem (see also Wang, Johnson, & Zhang, 2003)

In this paper we arguc that we need a multilevel
modeling approach That is, we need to develop weil-fitted
computational models at multipte levels for any given
cognitive phenomenon Because the mind mantfests itself ot
multiple levels, each level is reai and telis & unique story of
the mind on its own When we develop modeis for a specific
phenomenon at multiple levels, we would be able to
compare them, contrast them, and more importantly,
mutually justify them. By doing so, we expect that a more
complete picture of the mind might emerge

This paper is organized as [ollows We first bricfly
review findings on human atlentional networks and
introduce the Attentional Network Test (ANT) (Fan,
MuCandliss, Sommer, Raz, & Posner, 2002) We then
demonstrate the multifevel modeling approach by reporting
and cross-validating two computational models for the same
ANT task, one developed in ACT-R, and the other in leabra,
a biologically realistic conrectionist modeling framewark
(O'Reilly & Munakata, 2000} While both models fitied data
well they emphasized different levels of explanations
Finally the implications of this practice are discussed

Human Attentional Networks

Although “everyone knows what attention is” (James,
1890), how atlention works remains onc of the most
challenging questions in science (Parasuraman, 2000;
Pashier, 1998) Recent advances in cognitive psychology
and cognitive neuroscience have suggesied that there exist
muitiple attentional networks in the brain, each of which
subserves different types of attention (Fan et al, 2002;
Posner & Dechaene, 2000; Posner & Petersen, 1990) At
least three attentional networks, for elerting, orienting, and
executive control, have been distinguished at both coggitive
and nreurcanstomical levels (see Figure 2A) Specifically,
aleriing involves u change in the internal state to become
ready for any incoming task-refated events Neurcimaging
evidence has revealed that the slerting network consists of
some fromtal and parietal areas particularly of the right
hemisphere. Orienting, closely related o the conventional
selective  visuo-spatiai  attention, invelves sclectively
focusing on one or a few items out of many candidate
inputs Evidence has shown that the orienting network
includes parts of the superior and inferior parietal lobe,
frontai eye fields and such subcortical areas as the superior
colliculus of the midbrain and the pulvinar and reticular
nucleus of the thalamus Finally, executive controf of
atlention is related to monitoring and resolving conflicis
Excculive contral is often needed in higher level mental
operations including planaing, decision making, error
detection, novel or pot well-learned responses, and
overcoming habitual actions. Converging evidence from
neuroimaging and neuropwthology studies has suggested
that the executive control network consists of the midline
frontal areas (anferior cingulate cortex), lateral prefrontal
coriex, and the basal ganglia

The ANT paradigm was recently developed to
simultancously measure the performance of the (hree
attentional networks and evaluste their interrelationships
(Fan et al, 2002) 1t is essentially a combination of a spatial
cueing task (Posner, 1980) and & flanker task (Eriksen &
Eriksen, 1974), as illustrated in Figure 2B The stimulus
consists of a row of § horizontal arrows and the participants’
task is to report the pointing dircction {left or right) of the
center arrow {the target) by pressing a key. The four arrows
surrounding the target, with 1wo on cach side, are called the
flankers These flanker arrows point either in the sume
direction as that of the target (the congruent condition), or in
the opposite direction (the incongruent condition). An
additional conditior (the neutral condition) is also included
in which the fankers are four straight lines with no
arrowheads To introduce an orienting component, the tow
can be presented at two locations, either above o fixation
point (top) or below it (bottom} To introduce an alerting
comporent, the row may be preceded by o cue (the cued
condition) or may not {the no-cue condition) In addition,
when there is a cue, this cue may be presented st the center
fixation location (the center-cue condition), a1 the top or
bottom location where the stimuius row is to appear (the
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Figure 2. Human atientional networks (A) and the ANT task (3)

spatial-cue condition), or at both top and bottom lecations
(the doublc-cue condition) Nole that while a spatinl-cue
precisely predicts where the stimulus is lo appear, in both
the center-cue condition and the double-cue condition the
participant cannot infer that information from the cue
Fan et al {2002) tested 40 normal adult participants
using the ANT paradigm Their reaction time (RT) results
are shown in Fipure 3A They then proposed the lollowing
formula as 2 measure of the efficiency of each of the three
attentional networks:
Alerting efficiency = RT{no-cue} - RT{double-cue),
Orienting efficiency = RT{(center-cue) — RT (spatial-cue),
Conflict efficiency = RT{(incongruent) — RT{congruent),
which resulted in the efficiency measures of 47 £ 18 ms, 51
+ 21 ms, 84 & 25 ms, for alerting, orienting, and executive
control, respectively
Fan et al (2001) also reported an fMRI study using the
ANT paradigm Their resubts were consistent with the
general findings shown in Figure 2A.

Multilevel Computational Modeling of Human
Attentional Networks

While both the behavioral znd seuroimaging studies using
the ANT paradigm revealed important psychelogical and
neurophysiological characteristics of human atientional
networks, there exists 2 gap between these two levels of
snalyses. In particular, how do these different attentional
neural networks work together to generate psychologically
meaningful behavior? it has been well agreed that the link
between neural activities and psychological performance is
nontrivial and must be taken into account seriousiy 1o avoid
“neg-phrenology”.  Developing  well-principied  and
constrained computational models help in the regard (Cohen
& Tong, 2001)

Traditional computational moedeling approaches to
human  attention  have fypically adopted various

connectionist modeling techniques (e.g., Cohen, Dunbar, &
McClelland, 1990) Whike it has been {ruitful, this practice
fails to account for the manifestations of aftention at
symbolic/cognitive levels As we illustrated carlier,
attention, as an essentinl aspect of human cogaition, is a
complex multilevel construet. In order lo understand the
computational mechanisms of attention at different levels
and the links among them, we need multilevel models

We have developed a multifevel model for the ANT
task  One sub-model was developed in the symbolic
modeling framework of ACT-R and focused on the
psychological aspects of the task The other was developed
in the connectionist modeling framework of leabra and
emphasized the neurophysiclogical aspects of the task A
preliminary cross-vatlidation of (weo models is discussed

ANT on ACT-R

ACT-R is a production rule based copnitive modeling
architecture developed by John Anderson and colleagues
over a period of nearly two decades (see Anderson &
Lebiere, 1998). In essence, ACT-R explains human
cognition by proposing a model of the knowledge structures
and knowledse deployment that underlic cognition
Although ACT-R consists of a nontrivial subsymbolic
component for computations invelving activation and
associntion, it is fundamentally a symbolic modeling
framework in that it relies extensively on various symbolic
structures for knowledge representation For example, ACT-
R makes a fundamental distinction between declarative and
pracedural knowledge Declarative knowledpe corresponds
to things people sre nware of and can usually deseribe to
others and is represented in ACT-R by chunks Procedural
knowledge is knowledge that people display in behavior but
are not conscious of and is represented by production rules
(condition-actions pairs) Both chunks and production rules
are fundamental symbolic structures in ACT-R and are
regarded as the atemic components of thought in the sense
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Figure 3. Experimental (A, based on Fan et al (2002)) and modeling results (B and C)

that they are ns far down as one can go in the symbolic
decomposition of cognition In ACT-R, on average every
{itty (50) milliseconds, one production rule is chosen to fire,
a few declarative chunks are processed, and cognition
advances one step Therefore, it is claimed that ACT-R
captures the symbolic grain size of cognition

We developed a computational model for the ANT {ask
in the framework of ACT-R {Wang, Fan, & Johnson, 2004)
Our purpose is two-fold. First, we want to explore how
different types of attention work together in o single
framework to produce the cognitive performance. Second,
such a medel offers a solid testbed for us to cross-validale
those models based on varipus comnectionist modeling
results and neuroimaging data

We started by analyzing the major fuactional
components in the ANT task We distinguished six major
stages in a typical ANT trial: fixation and cue expectation;
cue of stimulus judgment; cue processing; stimulug
expectation; stimulus processing; and response We then
mapped these functional composemts onte 36 ACT-R
production rules, With these rules our model could pesform
the ANT task and interact with the same experimental
environment that human pariicipants interact

We evaluated the performance of the model by using the
model as a “simulated subject” to perform the ANT
experiment The RT results of 100 “simulated subjects™ are
presented in Figure 3B A correlation analysis shows very
high correlations (099 for RTs and 097 for error rotes)
between the simulation and experimental resuits We then
followed the same procedure discussed early to estimate the
effects of the three attentional networks based on the
simulated RT dota, resulting in the elficiency measures of
55 & 7.4 ms, 45 = 70 ms, 86 £ 74 ms, for alerling,
orienting, and executive control, respectively. A close match
between the two sels of data is apparent, with a notable
exception that the simulated standard deviations are
consistently smaller than the empiricai ones The reason is
that we did not add mny between-subject variance in our
medel. As a result, these simulated variances actuaily
reflected those within-subject variations in performing the
ANT task Overall these results suggest thot the model
captured well the various altentional effects that the ANT
sask was designed to measure
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The concept of production rule is fundamental to our
model of attention. One of the key features of the model is
that it mapped the effects of attentional networks to
production rules Rules fire in sequence and operale at a rate
of about 40-50 ms per production rule. As argued by ACT-
R, production rules define the atomic components of
thought ni the symbolic level When we examined the
efficiency measures of attentional networks reported in Fan
et al (2002) it scemed that they (51 ms, 47 ms, ond 84 ms,
for alerting, orienting, and executive control, respectively)
fell well into the range of & fow rule firings time period.
Perhaps all we need is zbout one (for alerting and orienting)
or 1wo (for executive control) additional production rules to
explain symbolically the work of attentional networks This
is indeed what our model demonstrated

ANT on Leabra

Leabra {focal, error-driven and associative, biologically
reatistic algorithm) is @ connectionist modeling framework
proposed recently by O’Reilly and Munakata (2000) There
are ot least three leatures that distinguish it from other
conneetionist modeling frameworks First, it has sound
neurological foundations it is biclogically realistic in
multiple aspects [ts neurons compule based on membrane
potentials and jon channels. [ts neuronal connections are
ofien bi-directional and cannot change signs {i e., changing
from an excitatory link to an inhibitory tink, and vice versa)
It uses biolopically inspired learning rules such as Hebbiun
learning for unsupervised learning and the peneralized
recirculation algorithm {but not the biologically unrealistic
backpropagation) for error-driven learning. Second, leabra
is a coherently integrated framework. Many distinctions in
traditional neural network modeling, including supervised
vs unsurprised learning, fecdforward vs recusrent networks,
and patiern recognition vs self-organization maps, are all
unified in o single coherent framework, based on well-
supported biological principles Third, partly due to its
biological realism, it is now possible, for example, to
designate n specific newral network to simulate a specific
area of brain, and fiexibly comnect the multiple such
networks, each of which can have its own properties such as
the average activation lfevel and the connection densily, to
simulate various brain pathways As a result, it offers great



flexibility to build a hierarchy of neural networks and link
network activities to higher-ievel symbols

A connection modet of the ANT task was developed in
the framework ol leabra The structure of the model is
shown in Figure 4 This mode} contains modules for all the
three sttentional networks. In addition, it contains modules
for perception {visual input and primary visuai corlex),
object recognition {object pathway), and response (output)
The netwotks are connected in such s way that they
conform to the known functional an anslomical constraints
as much as possible (Farah, 2000; O'Reilly & Munakala,
2000)

The model works as follows When a cue comes on, the
primary visual cortex module is activated, which in turn
triggers the alerting network. This cue-induced alerting
affects later stimulus processing because the alerting
network will remain excited for a while which will activate
the orienting network in general cuusing it to become ready
for the incoming stimulus In addition, when the cue is a
spatial one {ie, a cue that indicates where the tarpet
stimulus is to appear), it will further make the cotresponding
sub-region of the orienting network even more excited. This
ocecurs because the orienting network adopts a retinotopy-
based spatial representation of the environment. This extra
excitation in the sub-region of the orienting network will
facilitate the corresponding stimulus processing in the
ohject pathway nelwork, due to the connections between
them This accounts for the orienting effect Finally, note
that 1t is the object pathway network that is responsible for
the arrow direction detection. When the incongruent
stimufus {e g, a left arrow flanked by four right arrows) is
presented, the object pathway network may propose
different responses, which compete for the final expression
in the output network. The executive control network then
activates making the center arrow defeating the flankers
This is where the executive control attention piays a role

V(nunl Cortex
ST LOREX.

Visual input

Figure 4. A leabra moedel of ANT

The performance of the model was evaluated by using it
to perform the ANT task. Stimuli are presented to the model
in a similar way as to a human Depending on the
conditions, a cue, which can be cither o center cue or a
spatial cue, may be presented for a fixed time period before
the stimulus presentation (note that the double cuc condition
was not simulated here since the current version of model

were not cquipped with enough neurons). The number of
cycies the output module takes 1o produce a siable response
afler the stimulus presentation serves as a measure of the
reaction time The simulation results are shown in Figure
3C A repression anajysis showed that
RT{ms) = 12 * RT(cycie)

with a R-square of 0.99 It is clear that the model fits the
behavioral data reasonably wel

Discussion

Human atiention is & multi-component multilevel construct
Both behavioral and newroimping studies using the ANT
paradigm revealed important aspects of the funclion of
human attentional networks Multilevel computational
modeling helps to probe how these multiple components
work together ard manifest themselves at moltiple levels

The muitifevel model we reported in this paper consisted
of a sub-mode! developed in the framework of ACT-R and
the other in the framework of leabra While the former sub-
moedel focused on the symbolic knowledge structure of
cognitive performance ond psychological plausibility, the
jatter focused on the subsymbolic neural information
processing and biological realism However, since both
models simulated the seme ANT task and fitted the
empirical data well, the combined multilevel model offered
a real possibility to cross-validate the models and probe the
computational link among different levels

First af all, the mode] illustrated interesting relationships
between production rules and underlying  neural
computation As demonstrated in the ACT-R model, rules
are fundamenta units of psychological reality and typically
proceed serially However, the underlying neural networks
process information in paraliel The parallelism of neural
computation and the serial nature of rule firing can be
mapped ggainst each other along the time line Since both
types of models decompose the cognitive performance into
sub-units that occur st tens of millisecond scales, the
mapping may be able 1o tell how rules are implemented in
neural level computation Based on the models, lor
example, we can map one ACT-R rufe (40 ms in the current
model} to about three feabra cycles (about 12 ms per cycle)
Though such a simple and linear mapping should not be
taken literally, it does provide a vivid fooinote about how
parallel neurst computing is summarized psycholegically by
serial rufe firings 1t ilustrates that we may not be able to
find a “rule center” in the brain Instead, rules can be
implemented anywhere in the brain - they arc simply
patiemn matching. For example, there is a symbolic rule that
summarizes the conflict monitoring and detection operation
typically subserved by the anterior cingulate cortex The
general neural priming underlying alerting in the alerting
networks is summarized by another task switch rule

QOur mode] also demonstrates how functionally identical
operations can be implemented by different mechanisms at
different levels One interesting finding from Fan et al
{2002 is the small but reliable difference in RT (abouwt 11
ms) between the center-cue and the double-cue conditions
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A convenienl explanation is that in the double-cue condition
due to diffused artention both stimulus locations had been
primed a little, which saved a little time when the stimulus
appeared Inter While it is casy to model priming and
diffused attention in a connectionist model (¢ g, our leabra
model), how it is implemented at » symbolic rule level
raises # challenge Qur ACT-R model adopted a mechanism
in which several symbolic and psychologically mesningful
move-attention operations were carried oul sequentially
The simulated RT difference was 19 % § ms

The muitilevel model for human altentional networks we
reported in this paper has allowed us fo compare/contrast
the computational mechanisms at different levels and to
probe the important computationai links  between
psychologically meaningful mental operations and neural
activities. It also enjoys potentially significant prediction
power in that the model at one level can lead to nontrivial
predictions about the operations at another level However,
we recognize that for this approach to work models al each
fevel have to be independently and/or mutvally validated
Further analyses and more detailed alignments ol our
current moedel remain to be done
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