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Abstract

Psychostimulants, such as methylphenidate, are thought to improve information processing in motivation-
reward and attention-activation networks by enhancing the effects of more relevant signals and
suppressing those of less relevant ones; however the nature of such reciprocal influences remains poorly
understood. To explore this question, we tested the effect of methylphenidate on performance and
associated brain activity in the Anticipation, Conflict, Reward (ACR) task. Sixteen healthy adult
volunteers, ages 21-45, were scanned twice using functional magnetic resonance imaging (fMRI) as they
performed the ACR task under placebo and methylphenidate conditions. A three-way repeated measures
analysis of variance, with cue (reward vs. non-reward), target (congruent vs. incongruent) and medication
condition (methylphenidate vs. placebo) as the factors, was used to analyze behaviors on the task. Blood
oxygen level dependent (BOLD) signals, reflecting task-related neural activity, were evaluated using
linear contrasts. Participants exhibited significantly greater accuracy in the methylphenidate condition
than the placebo condition. Compared with placebo, the methylphenidate condition also was associated
with lessr task-related activity in components of attention-activation systems irrespective of the reward
cue, and less task-related activity in components of the reward-motivation system, particularly the insula,
during reward trials irrespective of target difficulty. These results suggest that methylphenidate enhances
task performance by improving efficiency of information processing in both reward-motivation and in

attention-activation systems.



1. Introduction

Methylphenidate (MPH) is an indirect agonist that increases intrasynaptic concentrations of dopamine
(DA) and noradrenalin (NA) by blocking their reuptake (Kuczenski and Segal, 1997; Seeman and
Madras, 1998) which in turn has been postulated to increase signal-to-noise ratio (Robbins and Arnsten
2009, Schulz et al., 2012). Specifically, NA increases signal via activation of a2a-adrenergic receptors,
and DA decreases noise via stimulation of D1-receptors (Robbins and Arnsten, 2009). Consistent with
these findings, low-dose treatment with MPH increases catecholamine neurotransmission, leading to
enhanced cognitive performance (Mehta et al., 2000; Berridge et al., 2006). These effects, suggesting
improved efficiency and enhanced task-related information processing in relevant neuroanatomical
networks (Arnsten 2006b), are related to cognitive impairments associated with attention deficit-
hyperactivity disorder (ADHD), depression, substance use disorders, and other neuropsychiatric
conditions. However, improved task performance with MPH has been linked to inconsistent changes in
both regional cerebral blood flow and blood oxygen level dependent (BOLD) signals in networks of
attention, working memory and reward processing detected by functional magnetic resonance imaging
(fMRI). Research has revealed both MPH-induced increases (Knutson et al. 2004; Doddsr et al. 2008;
Marquand et al. 2011; Marquand et al. 2012) and decreases in these parameters (Vaidya et al., 1998,
Mehta et al., 2000, Knutson et al., 2004, Miiller et al., 2005, Dodds et al., 2008, Tomasi et al., 2011),
often within the same sample, depending on the tasks employed. As most of the relevant prior fMRI
studies have focused on isolating activation patterns in particular networks, the effects of stimulants on
the interaction effects between complementary networks remain poorly understood. The goal of this
study, therefore, was to evaluate the effects of MPH on activation in both motivation-reward and
attention-activation systems in order to clarify the possible mechanisms by which MPH may improve
performance. Understanding the effects of stimulants and similar compounds on the interactions of
neuronal systems may guide the development of future treatments for attentional and mood syndromes.

The insular cortex is involved in the assessment of the motivational and rewarding aspects of

tasks as well as in monitoring of task difficulty and performance (Craig, 2009, Linke et al., 2010, Craig,
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2011). Further, activity in both the orbitofrontal and the insular cortices has been associated with
evaluating the rewarding and aversive aspects of environmental stimuli (London et al., 2000; Rolls, 2008,
Grabenhorst and Rolls, 2011). An extensive literature documents the role of these brain regions in
responses both to unexpected stimuli and to perceived error (Schwartz and Begley 2002), and also in the
pain-alleviating effects of placebo and verbal suggestion (Price et al., 2008). The insula and the
orbitofrontal cortex are thus well positioned to participate in integrating the behavioral and physiological
aspects of attentional, motivational and reward functions in both normal and pathological settings.

The Anticipation, Conflict, Reward (ACR) task, which has been used to study children and adults
(Ivanov et al., 2012; Ivanov et al., 2012), elicits activation in the insula and ortbitofrontal cortex (regions
within the motivation-reward network) and in the middle frontal cortex, basal ganglia and thalamus
(regions within the attention-activation networks). It therefore is well-suited for assessing interactions
between responses to reward and cognitive control stimuli. Here, we studied 16 healthy volunteers with
the ACR task to assess the influence of MPH on the activation of these two brain systems. Based on
results from other neuroimaging studies with MPH challenge (Vaidya et al., 1998, Mehta et al., 2000,
Knutson et al., 2004, Miiller et al., 2005, Dodds et al., 2008, Tomasi et al., 2011), we expected less brain
activation with MPH treatment than with placebo. We hypothesized that this difference would be evident
in brain regions indexed by the reward stimuli (e.g., insula and ortbitofrontal cortex) and by the conflict
stimuli of the ACR task (e.g., thalamus, middle frontal gyrus and basal ganglia). Considering the variation
in MPH effects in prior studies, it is plausible that reciprocal effects between the motivation-reward and
attention-activation networks are not adequately described when the activation of these networks is
assessed independently. We suggest that the ability of the ACR task to reveal interactions between brain
responses to reward incentives and conflict targets will facilitate the understanding of how stimulants

influence the interaction effects of these two complementary systems.



2. Experimental Procedures
2.1. Participants
Sixteen healthy right-handed adults, ages 21 to 45 years, participated in this study (Table 1). Results from
the same cohort, performing the ACR task in the placebo condition, have been published (Ivanov et al.,
2012b). The study protocol included an initial visit and two subsequent scanning sessions. At the initial
visit, all participants received a thorough explanation of the study, and gave written informed consent, as
approved by the Mount Sinai Institutional Review Board. Participants were interviewed by a board-
certified psychiatrist, and were screened for current/past psychiatric diagnoses using the Structured
Clinical Interview for DSM-IV (Spitzers et al., 1992). Those with major psychotic and/or mood/anxiety
disorders, ADHD and current substance use disorder(s) were excluded. Participants also underwent a
physical examination, including an electrocardiogram and heart rate/blood pressure readings, to exclude
any medical contraindications for the administration of MPH. Additional measures included the Symptom
Checklist-90-R (SCL-90-R)(Cyr et al., 1988), the Michigan Assessment-Screening Test/Alcohol-Drug
(MAST-AD)(Westermeyer et al., 2004), and Conners’ Adult ADHD Rating Scale—Self-Report: Long
Version (CAARS) (Conners, 2000). The Matrix Reasoning and Vocabulary subtests of the Wechsler
Abbreviated Scale of Intelligence (WASI) (Ryan et al., 2003) were administered to estimate Full Scale
1Q. Exclusion criteria included T-scores of 1.5 SD above age and gender means (i.e., > 65) on the
CAARS Total ADHD Symptoms index (indicating the possibility of ADHD) and the SCL-90 Total
Severity Index (indicating the possibility of other psychopathology), or an estimated 1Q < 80 (indicating
low cognitive capacity). Suspected current drug abuse, indicated by a MAST-AD score > 5, was also
exclusionary.

2.2. Anticipation, Conflict, Reward (ACR) Paradigm

The ACR task has been described elsewhere (Ivanov et al, 2012b; also see Figure 3 in supplemental
materials). In short, this task separately probes reward anticipation, conflict resolution, and reward

outcome, using a fixed and a relatively short cue-target interval to minimize the length of each trial and



maximize design efficiency (Fan et al., 2005). The task is designed to assess interactions between reward
cues and target difficulty, which are the primary factors of interest in this report. In that respect, the fixed
cue-target interval is most appropriate for the goal of the current experiment since the use of fixed interval
avoids assumptions about delay period activity or sustained neuronal responses, and prior work has
shown that a fixed 2250 ms cue-target interval provides sufficient estimates of cue and target-related

responses (Clerkin et al., 2009; Schulz et al., 2011).

The ACR contains four 32-trial blocks (each lasting 6-min 20-sec), with 30-second fixation conditions at
the beginning and the end of each block. The task contains non-reward and reward trials counterbalanced
in each block. Non-reward trials begin with the presentation of a yellow circle, and reward trials begin
with presentation of a blue circle. This cue is followed by a target, which is a central arrowhead, flanked
by two arrowheads on each side that may point in the same direction (congruent) or in the the opposite
direction (incongruent) of the center arrowhead; the two types of targets are counterbalanced within each
block. Participants are instructed to respond in the direction of the central arrowhead as soon as possible,
while ignoring the flankers, by pressing a button with their right or left index finger, which corresponds to
the direction of the central arrowhead. The potential outcomes are: i) correct response in a non-reward
trial, yielding $0, as indicated in a light-blue square, ii) correct response in a reward trial, yielding +$1,
as indicated in a green square; iii) incorrect or delayed response on both reward and non-reward trials,
resulting in -$1 displayed, as indicated in a red square. The running total of wins/losses is presented at the
end of each block. Participants must respond to each target regardless of the preceding cue to avoid
punishment (i.e. losing $1). Slow responses are defined as button presses longer than 750 msec. As stated
in the instructions given to the participants, (Table 4 in supplemental materials), only 50% of the correct
responses are rewarded; therefore, the maximum win is $8 for each block , and $32 for the whole task.
The monetary rewards associated with the ACR are virtual (not actual money); subjects were told in
advance that they would receive a fixed reimbursement upon completion of the task. The ACR contains

three components: anticipation (reward vs. no reward cue), conflict (congruent vs. incongruent flankers)



and outcome (positive, neutral or negative), and incorporates a nested factorial design (i.e. only
anticipation and conflict components are fully balanced) .

2.3. fMRI Procedures

The first fMRI scan was performed during the second study visit; the second scan was performed
approximately 2 weeks later. Participants practiced one block of the task on a desktop computer before
each scan. The scanning procedure lasted 35-40 min. Participants received one capsule of MPH or
placebo orally in a randomized order 1 hour before testing on each of two separate scan days. The dose of
MPH was 0.5 mg/kg, which averaged 30 mg for male and 20 mg for female participants.

2.4. Image Acquisition

All image data were acquired on a 3.0-T Siemens Allegra (Siemens Medical Systems) head-dedicated
MRI scanner using a high-performance head gradient system. Stimuli were projected via an SVGA
system onto a rear-projection screen mounted at the head of the magnet bore. Scan sessions began with
shimming and sagittal localization. A high-resolution, T2-weighted, anatomical volume of the brain was
acquired with a turbo spin-echo (TSE) pulse sequence with a repetition time (TR) of 4050 ms, echo time
(TE) of 99 ms, flip angle of 170°, 240 mm field of view (FOV), and 512 x 336 matrix. Forty axial slices
were acquired with a thickness of 4 mm (no gap) and an in-plane resolution of 0.47 x 0.47 mm.
Functional T2*-weighted, echo-planar images, indicating blood oxygenation level-dependent (BOLD)
signals, were acquired at the same 40 slice locations, with a TR of 2500 ms, TE of 27 ms, flip angle of
82°, FOV of 240 mm, and an acquisition matrix of 64 x 64. Each functional image comprised a brain
volume of 40 axial slices with 4-mm thickness (no gap) and an in-plane resolution of 3.75 x 3.75 mm’.
All images were acquired with slices positioned parallel to the anterior commissure — posterior
commissure line. All participants completed four runs of 380 seconds each, yielding 152 time points per
run.

2.5. Statistical Analysis

2.5.a. Behavioral Analyses The primary measures of performance were reaction time (RT) and accuracy

of responses over the four conditions: (i) congruent flanker following non-reward cue; (ii) congruent
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flanker following reward cue; (iii) incongruent flanker following non-reward cue; and (iv) incongruent
flanker following reward cue. A three-way repeated measures analysis of variance (ANOVA), with cue
(reward vs. non-reward), target (congruent vs. incongruent) and drug condition (placebo vs. MPH) as the
factors, was used to test for main effects and their interactions on RT and accuracy. The nominal false-
positive rate for these analyses was set at p <.05. Behavioral analyses were perfromed using SPSS
version 20.

2.5.b. fMRI Analyses Image processing was conducted using statistical parametric mapping (SPM5;

Wellcome Department of Imaging Neuroscience, London, U.K.). Pre-processing of the functional time
series was performed individually for each subject. The functional scans were slice time-corrected,
realigned to the first volume to correct for inter-scan motion, co-registered to the T2 image, normalized to
a standard template (Montreal Neurological Institute), and spatially smoothed with an 8 x 8 x 8 mm” full-
width at half-maximum Gaussian kernel. Neuroimaging results are based on whole-brain analyses.
First-level (within subject) analyses were conducted using a general linear model to quantify the
relationship between event-related BOLD responses and regressors encoding neural responses as
described below. Regressors were created by convolving a train of delta functions — that encoded
individual trial types — with the canonical hemodynamic response function, composed of two gamma
functions (Friston et al., 1998) . The six movement estimates from the realignment procedure were
entered as covariates of no interest. The design matrix comprised nine regressors of interest: two
regressors each modeling the main effect of reward vs. non-reward cue over all trials (i.e., anticipation),
four regressors to model the effects of reward cue and target congruence (and their interaction) , only for
correct trials (note that the presentation of reward cues and flankers was fully orthogonal). The final three
regressors modeled outcome effects (reward following reward cue, non-reward following reward cue, and
non-reward following non-reward cue).

The main effects of the ACR components were quantified with the following contrasts: anticipation
(reward cue minus non-reward cue), conflict (incongruent minus congruent targets) (i.e., the main effect

of congruency in correct trials) and reward outcomes (anticipated reward minus anticipated non-reward
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and surprising non-reward minus anticipated non-reward). In addition, the interaction between reward
anticipation and congruency (in correct trials) was assessed by contrasting incongruent minus congruent
targets under reward cues versus the equivalent contrast under non-reward cues, in both placebo and MPH
conditions (Table 5 in supplemental materials). The ensuing contrast images for each participant were
entered into second-level (between-subjects) random-effects group analyses, using two sample #-tests to
produce statistical parametric ~maps testing for regionally specific effects of drug (placebo versus MPH)
on responses to different levels of the ACR factors. We compared contrasts of the main effect of reward,
the main effect of conflict and a contrast testing for conflict by reward interaction, under MPH versus
placebo. We restricted our search for drug effects to regions showing main effects of reward, conflict and
their interaction (averaged over both drug conditions). We then quantified the effects of MPH vs. placebo
by examining the activation changes during reward cues and outcomes and targets using the appropriate
contrasts of parameter estimates. The magnitude of activation changes in regions showing significant
interactions were then plotted to quantify the underlying (unstandardized) effect sizes. Interactions
between reward anticipation and congruency were tested within volumes defined by the (orthogonal)
main effects of reward anticipation. The fMRI results are reported at a corrected significance level of p <
.05 using a random field correction (Nichols, 2012) with cluster extent threshold of 85 voxels (2x2x2

mm’).



3. Results

3.1.Behavioral Results

There was a significant main effect of reward cue on reaction time (RT) (F(;,15=8.75, p <0.05) and a
significant reward cue by target interaction for RT (F(; ;5=7.48, p <0.05) (Fig 4A in Supplemental
materials). RTs were significantly shorter in response to reward than non-reward cues for both congruent
and incongruent targets during placebo and for incongruent targets during the MPH condition; RT did not
change significantly for reward vs. non-reward cues for congruent targets during the MPH condition.
There was a main effect of target with significantly shorter RT for congruent vs. incongruent targets in
both placebo and MPH conditions, following both reward and non-reward cues (F;,,5=88.05, p <0.05).
There was a significant main effect of drug condition on accuracy (F;,15=4.47, p <0.05) and a significant
reward cue by medication interaction for accuracy (F(; ;5=4.50, p <0.05) (Fig 4B in Supplemental
materials). These findings were associated with higher accuracy during MPH over placebo conditions in
reward cue/congruent, reward cue/incongruent and non-reward cue/congruent trials (see Table 2),
whereas the accuracy was the same (97.52%) during non-reward cue/incongruent trials for both MPH and
placebo conditions. Lastly there was a main effect of target on accuracy (F; ;15=9.20, p <0.05), such that
congruent targets elicited more accurate responses in both reward/non-reward cue trials. Behavioral data
were normally distributed.

3.2.Neuroimaging Results

Compared with placebo, MPH consistently lowered activation in neuronal systems associated with reward
processing and executive control, as follows.

3.2.a. Reward Anticipation Contrasts for reward minus non-reward cues showed significantly lower

activation in the left insula, left caudate, left thalamus, and right cerebellum in the MPH condition as
compared with placebo (Table 3 and FigurelA, B).

3.2.b. Cognitive Conflict The incongruent minus congruent target contrast showed significantly less

activity in a widely distributed network, including the left supplemental motor gyrus, the left precuneus,

the postcentral gyrus bilaterally and the right cerebellum, in the MPH vs. placebo condition (Table 3).
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3.2.c. Anticipated Reward The anticipated reward (i.e., reward outcome that followed a reward cue and

correct target response) minus anticipated non-reward (i.e., neutral outcome that followed a non-reward
cue and correct target response) contrast in the MPH condition was associated with less activation in the
mid-occipital and inferior parietal cortex on the left than in the placebo condition (Table 3).

3.2.d. Surprising Non-Reward Contrasts of surprising non-reward (i.e. non-reward outcome following a

reward cue and a correct target response) minus anticipated non-reward elicited significantly less activity
in the left insula and the left pallidum in the MPH condition (vs. placebo) (Table 3, Figure 1C, D).

3.2.e. Reward Anticipation by Conflict Interaction Significant interactions between anticipation (reward

vs. non-reward cue) and conflict ( incongruent vs. congruent targets) were mapped at the single-subject
level; then the effects of the two medication conditions (placebo vs. MPH) were compared by a same-
sample t-test. To characterize the effect of drug on the reward cue-dependent conflict effects, we describe
the (three-way) interaction between reward cue, conflict and drug condition in terms of the difference
between the two-way interactions (i.e. reward cue and conflict) for the two drug conditions (i.e. placebo
and MPH) (Figure 2 A, B, C, D).

Significant interactions were detected in the right thalamus, right insula, right putamen, and the left
inferior frontal cortex (Table 2). MPH was associated with less activation (vs. placebo) in these regions in
all four conditions (i.e. non-reward cue/congruent target, non-reward cue/incongruent target, reward
cue/congruent target, reward cue/incongruent target), but this difference between MPH and placebo
varied with whether activation was measured in the attention-activation system or the motivation-reward
system. Notably, MPH was associated with less activation than placebo in components of the attention-
activation system in response to both congruent and incongruent targets, and this difference was greatest
for the non-reward/incongruent trials. This finding is exemplified by no interaction effects in the placebo
condition and significant reward cue/incongruent target vs. non-reward cue/incongruent target
interactions in the MPH condition in the thalamus, the putamen and the inferior frontal gyrus (Figure 2
A,B,C). These effects were associated with a robust decrease of activation in non-reward/ incongruent

trials with MPH. By contrast, differences in activation in the right insula (part of the motivation-reward
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system) followed a different pattern. Parameter estimates showed that the decrease in insula activation
with MPH compared to placebo was more pronounced in reward vs. non-reward trials, regardless of the
target type. This finding is illustrated by a significant non-reward/congruent vs. non-reward/incongruent
target interaction during the placebo and no interaction effects during the MPH condition. These effects
were associated with a robust decrease of activation for both congruent and incongruent reward trials with

MPH (Figure 2 D).
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4. Discussion

4.1. General Considerations

In this study we expanded our previous research as we examined changes in performance on the ACR
task in relation to MPH administration and assessed MPH effects on the activation of the attention-
activation and motivation-reward systems. The results from this experiment suggest the following
considerations. First, the behavioral results show that MPH administration improved accuracy possibly
due to improved attention independent of reward cues; in turn reward trials were associated with shorter
RT possibly due to increased motivation independent of MPH administration. Neuroimaging results
demonstrated that MPH was associated with lower activation in regions that belong to both the attention-
activation (Figure 2 A, B, C,) and motivation-reward (Figure 2 D) systems over placebo suggesting
improved information processing. The patterns of activation change for these two systems were, however,
distinctly different. The changes of activation from placebo to MPH in the attention-activation system
possibly reflected improved processing of conflict and interference particularly in incongruent (difficult)
targets, and were independent of reward incentives. The lower activation with MPH in the motivation-
reward system during reward trials for both easy and difficult targets suggests that in the MPH condition
all trials may have been experienced as equally rewarding regardless of the level of difficulty.

Previous neuroimaging studies have provided conflicting results regarding the effects of MPH, with a
single-dose MPH challenge either increasing or decreasing task-related activity in brain regions
associated with executive functions and inhibitory control, depending on the subject group and the
activation paradigm (Vaidya et al., 1998; Knutson et al., 2004). We have observed that MPH treatment
(4-6 week daily administration) decreased task-related activity in the ACC and inferior frontal gyrus
while increasing task-related activity in regions within the default network (e.g., posterior cingulate
cortex) in children and adolescents with ADHD, suggesting that the beneficial effects of MPH may be
related to enhanced efficiency of information processing (Schulz et al., 2012). In this respect, this report

provides additional evidence that acute (similar to chronic) MPH administration is associated with
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decreased activation in brain regions linked to reward processing (e.g. insula) and executive control (e.g.
ACC, thalamus among others).

The effect of MPH to lower activation in regions of the attention-activation system vs. placebo may
reflect augmentation of catecholamine effects to amplify response to salient signals with concomitant
suppression of background noise (Foote et al., 1975) with resultant improvement of performance. Here
we show that activation in the attention-activation system was lower with MPH during responses to both
congruent and incongruent targets, irrespective of the preceding reward cue. The change of activation
during incongruent targets in non-reward trials from highest with placebo to lowest with MPH (Figure 3
A, B, C) suggests that the participants were engaged in the task and motivated to exert effort to avoid
monetary loss. These neuroimaging results together with the participants’ improved accuracy with MPH
and significant MPH-by-reward cue interaction (i.e., greater accuracy on difficult reward trials with
MPH) suggest that the drug may render the experience of the task as “easier”, and also may optimize
information processing during conflict, thereby, improving performance.

4.2. Effects of MPH on Executive Control The main effects of the conflict component of the ACR task
during the placebo condition suggest that the task engaged regions that have been associated with
executive control of attention (i.e. right thalamus, right putamen and left inferior frontal gyrus Figure 2 A,
B, C). The MPH-dependent decrease of responses in these regions is consistent with previous reports that
during response inhibition tasks healthy volunteers exhibit diminished activation in brain regions such as
inferior frontal gyrus, insula and putamen (Costal et al., 2012; Pauls et al., 2012). However, this MPH
effect on activation was not linked to changes in RT, as there was no main effect of MPH on RT. In other
words, quicker responses were not associated with better performance; it appears that a change of strategy
— from minimizing losses during placebo to maximizing money wins with MPH — was most likely related
to improved accuracy with MPH administration.

4.3. Effects of MPH on Reward Processing The main effects of MPH during reward cues and outcomes
were observed in brain regions associated with both attention and reward-processing. In particular,

significant changes in activation during responses to reward cues were observed in the insula and the left
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caudate (Fig 1). Given a literature that supports a role of the insula in reward processing (Paulus et al.,
2003; Linke et al., 2010) and of the caudate nucleus in preparation to act (Opris et al. 2013), the cue
component of the ACR task may have been experienced partially as a preparation for response to
subsequent targets.

Surprising non-reward outcome (i.e., non-reward following a previously indicated reward cue and correct
performance, also see Table 5 Supplemental materials), consistently engaged the insula (Table 3). As this
region is involved in monitoring of reward outcomes (Paulus et al., 2003; Linke et al., 2010), our results
support the notion of a role of the insula in the assessment of reward-related feedback (Ivanov et al.,
2012a). Also of interest is the reward-by-conflict interaction in the insula after MPH (Figure 2 B), which
suggests increased efficiency in the processing of both congruent and incongruent targets that followed
reward cues. Therefore, decreased reward-related activation in the insula with MPH may reflect improved
information processing and heightened sensitivity to monetary wins, which in turn may have boosted
motivation and effort. In contrast, the insula activation during placebo was greater with difficult targets
that followed non-reward cues, possibly because these targets were experienced as less rewarding. As
activation of the insula has been linked to monitoring of performance and error detection (Klein et al.,
2007), our findings suggest that in the absence of a stimulant drug the activation of the insula may reflect
efforts to optimize overall outcome by minimizing monetary losses whereas the insula activation after
stimulant administration may reflect efforts to maximize outcomes by obtaining rewards with both “easy”
and “difficult” targets.

4.4. The Role of the Insula in Reward Processing and Executive Control

Interactions between brain regions involving reward and cognitive control has been a subject of
significant interest, for example, in work that frames these interactions in terms of intrinsic connectivity
networks for salience processing (a term which unites conflict monitoring, interoceptive-autonomic
arousal, and reward-processing centers) and executive control (Seeley et al., 2007). Other reports have
demonstrated that training focused attention, both within short- and long-term time frames, can enhance

functional connectivity between components of the reward-motivation and attention-activation systems,
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and specifically between the prefrontal-anterior insula cortex and lateral cortical regions (Hasenkamp et
al., 2012; Farb et al., 2007).

The insula is now recognized as being involved in functions involving conflict and reward monitoring,
error-detection and interoception of autonomic arousal (Craig 2009, 2011, Seeley et al., 2007,
Grabenhorst et al., 2011), all of which are highly relevant to the task elements evaluated by the ACR. In
theory, improved connectivity between the insula and elements of the executive network may allow for a
more efficient switching between the reward-motivation and attention-activation systems and their
associated functional states. This report further advances the understanding about the relationship
between the unsula region and the executive network. More specifically, we suggest that in the placebo
condition insula activations suggest that “difficult” non-reward trials were also associated with greater
mental effort (i.e. higher activation in components of the attention- motivation network) as attempts to
avoid monetary loss. Alternatively, MPH improved performance accuracy as it simultaneously improves
information processing and decreases activation in both attention- motivation and reward-motivation
networks. The changes in insula activation in MPH vs. placebo suggest that both “easy” and “difficult “
rewards were equally stimulating with MPH, which may be related to the drug ability to improve
performance (i. e. possibly relevant to its therapeutic effects in ADHD) and increase motivation for
rewards (i.e. possibly relevant to its abuse potential).

4.5. Limitations The sample size (n=16) was small, and there were some limitations related to the ACR.
Although the ACR is performance-dependent, the attainment of reward during the task is not linked to
actual monetary compensation. Also, the ACR offers only two incentive levels (reward cue signifying a
potential $1 win, and a non-reward cue) whereas multiple incentive levels (e.g. 25 cents, 50 cents, $1, $5)
seem to engage components of the motivation-reward system more reliably during reward anticipation.
These factors may explain why activation was detected in fewer regions of the reward system during the
reward cues than other studies. Lastly, we were not able to assess activation during the punishment

condition because overall accuracy of performance was very high.
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4.6. Conclusions This study offers some new insights regarding the effects of MPH and possibly other
stimulants on two complementary brain systems that are essential for task performance. The results
highlight the importance of the insula as a region engaged in performance-monitoring but also in
decision-making related to optimizing performance and outcomes. We further suggest that MPH
administration may improve accuracy due to its effects on motivation to obtain reward as well as

preparation for action and conflict resolution.
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Legend for Tables and Figures

Table 1. Demographics

Variables Mean SD

Age 30.63 +7.44

SCL Global Severity Index 3791 +9.04

SCL Positive Symptom Total 41.42 +12.57
CAARS — ADHD Index 40.81 +5.66
MAST -AD 1.81 +4.49

Gender Male =8 Female = 6

Note: T scores >1.5 SD on SCL and CAARS and MAST raw scores > 5 were considered
abnormal.
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Table 2. Behavioral results

Variables Trial Type
Congruent Target Incongruent Target
Reward Nonreward Reward Nonreward
Cue Cue Cue Cue

Reaction Time PL
(Mean, SD)

Reaction Time MPH
(Mean, SD)
Accuracy (%) PL

Accuracy (%) MPH

518.35(+£83.92)  523.40 (£ 96.65)  567.05(£95.17) 584.77 (£103.48)

510.63 (+92.34)  506.02(+86.02)  550.83 (+83.78) 571.10 (+105.22)

98.43 98.82 96.87 97.52

99.60 99.08 99.21 97.52
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Table 3. Activation with ACR Task

ACR Components PL vs. MPH MNI coordinates | Cluster size zZ
Anticipation

L Thalamus PL>MPH -18 -16 10 393 4.06
L Insula 32 0 12 393 3.57
R Cerebellum crus 6 14 -70 -28 393 3.11
L Caudate -4 24 2 101 3.79
Conflict

Supplemental motor gyrus PL>MPH -20 -8 66 3579 3.90
L Precuneus -12 -62 52 4590 4.54
R Cerebellum crus 9 14 -56 -50 4590 3.77
L Post central -62 -4 30 3579 3.83
R Post central 34 -36 52 3579 4.18
Expected Reward PL>MPH

L Mid Occipital -26 -58 38 511 3.98
L Inferior Parietal -34 -52 46 511 2.98
Surprising Non-Reward PL>MPH

L Insula -40 16 10 786 4.49
L Pallidum 22 -4 -4 766 3.86
L Insula -32 12 8 766 3.81
Interactions NA

R Putamen 28 -6 14 686 3.74
R Insula 40 2 -10 686 3.22
L Inferior Frontal -32 32 10 338 3.04
L Middle Frontal -24 46 20 338 3.04
R Thalamus 12 -16 6 686 3.04
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Figure 1. Activation with Reward Components of the ACR Task
Statistical parametric maps in axial views showing significant blood oxygenation level-

dependent (BOLD) signal changes:

A — BOLD signal increase in the left insula in the placebo vs. MPH condition during the
reward — non-reward cue contrast;

B — BOLD signal increase and the left caudate in the placebo vs. MPH condition during
the reward — non-reward cue contrast;

C — BOLD signal increase in the left insula in the placebo vs. MPH condition during the
surprising non-reward — expected non-reward outcome contrasts.

D - BOLD signal increase in the left palidum in the placebo vs. MPH condition during
the surprising non-reward — expected non-reward outcome contrast.

The figures were thresholded at p <.05 (corrected); the color bar indicates color-coded

significance of the z-test values.
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Figure 2. Interaction Effects during ACR task

Estimated percent change in the BOLD signal during congruent and incongruent flankers
of the ACR task in relation to the preceding cue (i.e. reward vs. non-reward) in placebo
and MPH conditions in:

A) right thalamus

B) right putamen

C) left inferior frontal gyrus
D) right insula

The SPMs were thresholded at p < .05 corrected; the color bar indicates color-coded

significance of the z-test values.
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Figure 1. Activation with Reward Components of the ACR Task
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Figure 2B.
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Figure 2C
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Figure 2D.
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