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Abstract

The deprivation of sensory input after hearing damage results in functional reorganization of the brain including cross-
modal plasticity in the sensory cortex and changes in cognitive processing. However, it remains unclear whether partial
deprivation from unilateral auditory loss (UHL) would similarly affect the neural circuitry of cognitive processes in addition
to the functional organization of sensory cortex. Here, we used resting-state functional magnetic resonance imaging to
investigate intrinsic activity in 34 participants with UHL from acoustic neuroma in comparison with 22 matched normal
controls. In sensory regions, we found decreased regional homogeneity (ReHo) in the bilateral calcarine cortices in UHL.
However, there was an increase of ReHo in the right anterior insular cortex (rAI), the key node of cognitive control network
(CCN) and multimodal sensory integration, as well as in the left parahippocampal cortex (lPHC), a key node in the default
mode network (DMN). Moreover, seed-based resting–state functional connectivity analysis showed an enhanced
relationship between rAI and several key regions of the DMN. Meanwhile, lPHC showed more negative relationship with
components in the CCN and greater positive relationship in the DMN. Such reorganizations of functional connectivity within
the DMN and between the DMN and CCN were confirmed by a graph theory analysis. These results suggest that unilateral
sensory input damage not only alters the activity of the sensory areas but also reshapes the regional and circuit functional
organization of the cognitive control network.
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Introduction

The functional organization of brain continues to change after

prenatal development and can undergo remodeling throughout a

person’s life to adapt to changing sensory experiences [1,2].

Previous research has demonstrated that non-auditory sensory

stimulation could activate the regions responsible for auditory

processing in deaf people [3–5], which implies the existence of

cross-modal plasticity in the sensory cortex of those who are

completely deaf [6]. In addition, studies on the aging and cochlear

implant populations [7–10] have demonstrated that hearing loss

can alter different aspects of human cognitive functions in both

pre- and post-lingual deafness [11–13], such as enhanced

peripheral visual attention across time or space [14–17], behav-

ioral inhibition defects [9,18], distributed short-term memory [19]

and compromised executive function [20–22]. Thus, there are at

least two important forms of remodeling of the brain during

hearing damage: the cross-modal plasticity implies that functional

reorganization in sensory regions compensate for the compro-

mised hearing input by optimizing multi-sensory perception [6]

and changes in cognitive function suggest that more cognitive

resources must be engaged during auditory processing to

compensate for hearing impairment [11,19].

Unlike those with bilateral deafness, unilateral hearing loss

(UHL) individuals preserve much of the ability to capture auditory

information, and the changes in auditory processing are more

complicated [23–26]. Moreover, the brain is organized into

intrinsic networks, which work cooperatively to facilitate an

individual’s responses to stimuli [27], and these networks

instantiate the maintenance of information for interpreting,

responding to and even predicting environmental demands [28].

When one of the sensory perceptions is compromised, such as the

asymmetrical auditory processing in UHL, it may affect not only

the integral auditory perception [29] but also the auditory
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processing for higher-order representations [30–32]. It is therefore

reasonable to predicate that the internal connectivity within

sensory and high-order control networks as well as integration

between these networks might be reorganized in UHL patients

functionally. Previous research has addressed the issue of how

UHL affects the plasticity in central auditory pathway, however,

most of these studies are confined to the auditory cortex by

examining task-related brain activation [33–36]. No study to date

has investigated the functional changes associated with asymmet-

rical hearing damage and considered the reorganizations related

to both sensation and cognitive functions. It remains unclear

whether the deprivation of unilateral auditory input would affect

the neural circuitry of the cognitive control network in addition to

sensory cortex.

Resting-state fMRI is a promising noninvasive technique for

mapping whole brain functional activity. Previous studies have

demonstrated that regional homogeneity (ReHo) [37], a robust

index with high test-retest reliability [38] can be used to map the

synchronization of time courses between neighboring regions, as

well as resting state functional connectivity (RSFC) [39] with

excellent test-retest reliability [40] for measuring the temporal

relationship among spatially distant regions, were quite informa-

tive for investigating the neural basis of individual differences in

sensory deprivation [41–43] [32,44,45]. Moreover, resting-state

fMRI is especially useful in clinical populations which have

difficulty in task performances [27] such as patients with UHL,

and it could provide functional information for simultaneously

investigating the mechanisms of auditory and non-auditory higher

order functional changes underlying UHL.

We hypothesized that the sensory cortex as well as regions

subserving the higher order control network would be the primary

regions affected by reduced hearing in UHL. We collected resting-

state fMRI data from participants with UHL that resulted from

acoustic neuroma and compared them to healthy controls to

examine the plastic changes in regional homogeneity and

functional connectivity in UHL. We predict that UHL patients

would show abnormal resting activity not only in primary sensory

regions, but also in the networks involving in cognitive control.

Materials and Methods

Participants
All participants were right-handed and reported no previous or

current psychiatric disorders (see Table 1 for all participants’

demographic and clinical characteristics). Informed consent was

obtained from all subjects prior to their participation, and all

participants provided their written informed consent to participate

in this study. The study was approved by the Institutional Review

Board of Beijing Tiantan Hospital, Capital Medical University.

Thirty-six untreated UHL patients with primary ipsilateral

acoustic neuroma (AN) and 24 normal controls (NCs) participated

in the study. Two UHL participants (One left UHL and one right

UHL) and 2 NCs were excluded due to excessive head motion

(please refer to Data Preprocessing). Finally, 34 UHL patients and

22 NCs were included in the study. Among the patients, 17 had

hearing loss in the left ear and 17 had hearing loss in the right ear.

NC were recruited from local communities in Beijing.

Cognitive and Clinical Assessments
The cognition of all participants was evaluated by the Mini-

Mental State Examination (MMSE) [46], which has been widely

used clinically for screening cognitive impairment. It includes 11

items that assess eight categories of cognition: orientation to time,

orientation to place, registration, attention and calculation, recall,

language, repetition, and complex commands. The full score is 30

points and a low score indicates cognitive impairment. MMSE

evaluation was performed to provide a brief and accurate report of

the neurological status including mental status, cranial nerves,

motor, sensory, coordination, and reflex functions of all patients.

Pure tone audiometry (PTA) is a gold standard for the

assessment of hearing loss. We used the standard Hughson-

Westlake PTA procedure to identify hearing threshold level of

both ears for all participants in the study. The air-conduction

pure-tone audiogram was assessed by a clinical audiologist under

standard conditions. Audiometric measurements were performed

using a GSI-61 audiometer, including TDH39 headphones.

Audiologic equipment was calibrated on a regular basis. Pure

tone audiometry was conducted at frequencies of 0.25, 0.5, 1, 2, 4,

and 8 kHz. Acoustic thresholds of the affected ears were compared

with those of the contralateral (unaffected) ears at each frequency

level. The mean acoustic thresholds in speech frequency ([0.5 kHz

+1 kHz +2 kHz +4 kHz]/4) were calculated to estimate the level of

hearing loss.

Demographic and Auditory Profile
Based on the evaluations of MMSE and standard neurological

examinations, all the participants did not show cognitive,

language, or somatosensory deficit besides hearing loss. As shown

in Table 1, there was no significant group difference in age

(F = 0.338, p = 0.715), gender (x2 = 1.945, p = 0.378), education

(F = 1.565, p = 0.219) or MMSE (F = 2.033, p = 0.141) among

three groups of subject. Most of the UHL participants had severe-

to-profound hearing loss in the impaired ear (eleven left UHL with

PTA $50 dB and the other six 50.PTA$20 dB; twelve right

UHL with PTA $50 dB and the other five 50.PTA$20 dB).

UHL patients showed higher PTA levels of the impaired ear than

those of the same side of ears in NCs (t = 25.9, p,0.001 for left

UHLs; t = 27.2, p,0.001 for right UHLs). Meanwhile, no

significant difference was found between PTA levels of unaffected

ears in UHL patients and those of the same side of ears in normal

controls (t = 1.272, p = 0.211 for left UHL; t = 1.925, p = 0.062 for

right UHL). There was no significant differences in the duration of

hearing loss (t = 0.437, p = 0.665), PTA between the left and right

ears that were compromised (t = 0.034, p = 0.973), or the

contralateral ears with intact hearing (t = 20.257, p = 0.799)

between these two patient groups.

Imaging Acquisition
All functional and structural images were acquired on a 3.0

Tesla scanner (Siemens Trio, Erlangen, Germany) using 12-

channel head coil. Head movement was minimized using foam

pads, and earplugs were used to attenuate acoustic noise during

scanning. For the ten-minute resting-state fMRI scan, participants

were instructed to hold still and keep their eyes closed, but not to

fall asleep nor think of anything in particular. Resting-state fMRI

data were acquired using an echo-planar image pulse sequence (41

axial slices, slice thickness/gap = 3.5/0.7 mm, repetition

time = 2500 ms, echo time = 30 ms, flip angle = 90u, and field of

view (FOV) = 2566256 mm2 with in-plane resolution of

3.7563.75 mm2). A T1-weighted sagittal anatomical image was

also obtained using a gradient echo sequence (176 slices, slice

thickness/gap = 1/0 mm, inversion time = 900 ms, repetition

time = 2300 ms, echo time = 3 ms, flip angle = 7u, number of

excitations = 1, FOV = 2566256 mm2 with in-plane resolution of

0.937560.9375 mm2).

Cortical Plasticity of the Unilateral Hearing Loss Patients
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Data Preprocessing
The resting-state fMRI data were preprocessed using SPM8

(http://www.fil.ion.ucl.ac.uk/spm ) and a pipeline analysis tool-

box, DPARSF [47] http://www.restfmri.net/). To avoid transient

signal changes before the longitudinal magnetization reached a

steady state, the first ten volumes were discarded. The remaining

images were preprocessed using a procedure, which included slice

timing correction, head motion correction, T1-weighted image

based spatial normalization to the Montreal Neurological Institute

(MNI) space, linear trend removal, and band-pass filtering (0.01–

0.08 Hz). All of the participants’ head motion parameters were less

than 3 mm in translation and less than 3 degrees in rotation. To

further reduce the effects of head motion on estimates of resting-

state activity, we censored volumes within each participant’s fMRI

time series that were associated with sudden head motion [48,49].

For each participant, fMRI volumes were censored if framewise

displacement (FD) of head position, calculated as the sum of the

absolute values of the derivatives of the realignment estimates, was

above 0.5. As a result, four participants (one left UHL, one right

UHL and two NCs) with less than five minutes of data after

‘‘scrubbing’’ were excluded from the further analysis.

Data Length and Mean FD after ‘‘scrubbing’’
The mean numbers of volumes of left UHLs, right UHLs and

NCs after scrubbing were 229.9, 224.5 and 226.2, respectively.

There waere no significant differences in the number of volumes

between the three groups of subjects (p = 0.77). Mean FD of the

three groups after scrubbing were 0.11 mm, 0.12 mm and 0.13

mm, respectively. No significant statistical difference was found

between mean FD of the three groups of subjects (p = 0.68).

ReHo Analysis
ReHo [37] was used to measure local synchronization of

spontaneous BOLD fluctuations within a given cluster (e.g. 27

nearest neighboring voxels). Kendall’s coefficient of concordance

(ranged from 0 to 1) was used as a measurement of ReHo for each

voxel, an indication of similarity between the time series of that

voxel and its nearest neighboring voxels. It was measured in a

voxel-wise way for each participant within a whole brain mask

provided by REST [50]. To reduce nuisance sources of variation

[51], individual ReHo maps were divided by the global mean

value within the whole brain mask for normalization. Then, all

normalized ReHo maps were spatially smoothed with a 6-mm full

width at half-maximum (FWHM) Gaussian isotropic kernel.

To detect differences in ReHo amongst the three groups of

participants, a one-way analysis of covariance (ANCOVA) was

conducted based on the ReHo maps within the whole brain mask

with age and gender information as covariates. The Gaussian

Random Field theory, which has been implemented in REST, was

used to correct for multiple comparisons. The corrected p,0.05

(uncorrected p,0.001 and minimum 21 voxels in a cluster) was

used as threshold. To determine which pairs of groups contributed

to the significant group difference, post hoc Tukey pairwise

comparison was conducted between each pair of groups for each

cluster, with a significance threshold set at 0.05.

Seed-based Resting-state Functional Connectivity
Analysis

Significant clusters were extracted from ANCOVA of ReHo

maps and served as seeds in resting-state functional connectivity

analysis. First, non-neuronal-related covariates, including six

parameters of head motion correction, the average time courses

of the whole brain (global mean signal), the average time courses

within the white matter mask, and the average time courses within

the CSF mask, were removed from the preprocessed data by linear

regression analysis. Then, the images were spatially smoothed with

a 6-mm FWHM Gaussian kernel. We computed the functional

connectivity between each seed region and every voxel within the

whole brain mask. The individual functional connectivity maps

were transformed to z-maps using Fisher’s z-transformation to

improve data normality. A series of one-sample t-tests were

conducted to detect cortical areas functionally connected with

Table 1. Demographic and auditory characteristics of the participant groups.

Left UHL Right UHL NC F value p value

Age (years) 45.766.5 43.065.4 46.064.8 0.337 0.715

Gender 12f/5m 8f/9m 13f/9m 1.945* 0.378

Handness R R R NA NA

Education (years) 12.461.9 11.662.3 13.761.2 1.565 0.219

MMSE 26.861.2 27.561.1 28.160.6 2.033 0.141

Left ears PTA (dB) 67.2619.2 18.663.8 16.062.2 1.925a 0.062

25.9b 0.000

Right ears PTA (dB) 19.162.3 66.8615.6 15.662.4 1.272c 0.211

27.2d 0.000

0.034e 0.973

Duration of UHL (months) 26.1610.9 22.6611.7 NA 0.437** 0.665

Abbreviations: UHL = unilateral hearing loss patients, MMSE = Mini-Mental Status Examination, f = female, m = male, R = right, NC = normal controls. Left and Right
PTA = pure tone audiometry results of [0.5 kHz +1 kHz +2 kHz +4 kHz]/4 of the left and right ears,
*: x2 value of Chi-square test,
**: t value of t-test between duration of left and right UHL,
a: t value of t-test between PTA in left ears of right UHL and NC,
b: t value of t-test between PTA in left ears of left UHL and NC,
c: t value of t-test between PTA in right ears of left UHL and NC,
d: t value of t-test between PTA in right ears of right UHL of NC,
e: t value of t-test between PTA in impaired ears of left and right UHL,
doi:10.1371/journal.pone.0096126.t001

Cortical Plasticity of the Unilateral Hearing Loss Patients

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e96126

http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net/


each seed region in each group of participants (Figs. S2–S3). A

group connectivity mask was generated with an ‘‘OR’’ operation

of the corrected functional connectivity maps of the three groups

for each seed. For each seed region, one-way ANCOVA, with age

and gender as covariates, was used to identify brain regions within

the mask, with significant differences in connectivity to the seed

region among the three groups. Multiple comparison correction

was performed according to the Gaussian Random Field theory

with a corrected p,0.05 (uncorrected p,0.001 and minimum 21

voxels in a cluster) within the whole brain mask. Similar to ReHo

analysis, post hoc Tukey pairwise comparisons were conducted

between each pair of groups for each significant cluster identified

by the ANCOVA of seed-based functional connectivity.

Further, to examine more directly the potential reorganization

of brain activity in the default mode network (DMN) and cognitive

control networks (CCN) subserving higher-order cognitive func-

tions, we performed ROI-based functional connectivity analysis

using previously defined ROIs (Table S1) of the DMN and

cinguloopercular network, a representative networks that compose

the CCN involving rAI.

Correlation between Intrinsic Resting-state Activity and
Degree and Duration of Hearing Loss

To investigate the relationship between brain plasticity and

PTA as well as hearing loss duration in participants with UHL, we

calculated the correlation between the above computed resting-

state activity indices (i.e. ReHo/RSFC) and PTA and hearing loss

duration. Corrected p,0.05 was used as threshold for multiple

comparisons correction (uncorrected p,0.01, corrections for

ReHo and for RSFC analyses were performed using the whole

brain mask and the Group connectivity mask, respectively).

Results

Abnormal Regional Activity of UHL Patients in ReHo
The ANOVA of ReHo showed significant group differences in

cortical regions, including left parahippocampal cortex (lPHC),

right anterior insular cortex (rAI), and bilateral calcarine cortices

(see Fig. 1), indicating that the neural synchronization of local

brain areas during resting state were reshaped by auditory

deprivation in UHL. Further post hoc comparisons amongst the

lPHC, rAI and bilateral calcarine cortices (Fig. 1, see Table 2 for

details, p,0.05) showed that left UHL and right UHL participants

had higher ReHo values in the rAI compared to NCs (post-hoc p,

0.001) (Fig. 1A). Right UHL participants showed higher ReHo

values than NC and left UHL participants (post-hoc p,0.001) in

the left PHC (Fig. 1B). Meanwhile, left and right UHL participants

had lower ReHo in bilateral calcarine cortices compared to NCs

(post-hoc p,0.001) (Fig. 1C–1D).

Abnormal Circuit Activity of UHL Patients within and
Beyond the Auditory System

Four regions identified from ReHo analyses were used as seeds

for RSFC analysis, including lPHC, rAI and bilateral calcarine

cortices, respectively. ANCOVA on the functional connectivity of

the rAI seed region showed significant group differences in the

medial prefrontal cortex (rMPFC), right pregenual anterior

cingulate cortex (pACC) and right postcentral gyrus (rPCG)

(post-hoc p,0.05, see Fig. 2). Using lPHC as a seed, DMN regions

(i.e. right angular gyrus, right precuneus, left cuneus) showed the

stronger connectivity among UHL patients compared with NC

(post-hoc p,0.05, see Fig. 3). There was no significant difference

among three groups in RSFC with bilateral calcarine cortices as

the seeds. Post-hoc pairwise comparisons (see Table 3 for details,

p,0.05) showed increased strength of functional connectivity in

UHL patients compared to normal controls by using lPHC and

rAI as seeds, while no findings of decreased RSFC strength in

UHL. Importantly, most of these regions showing altered RSFC

were associated with higher-order brain structures including those

of the DMN (lPHC, left cuneus, right precuneus and MPFC) and

CCN (rAI, rACC), and these results were confirmed by a graph

theory analysis (see Text S1, Fig. S6 and Fig. S7).

To note, neither ReHo nor RSFC showed a significant

correlation with hearing loss duration or auditory ratings.

Discussion

Exploring intrinsic brain activity is important for the under-

standing of brain organization and it may best capture the essence

of brain function [55]. In current study, we found decreased ReHo

in bilateral calcarine cortices in UHL patients. Moreover, ReHo

was increased in the rAI, the key node of CCN, and in the lPHC, a

key node of DMN, while the reorganization of RSFC within DMN

and between DMN and CCN was confirmed by graph theory

analysis. These findings support the notion that adaptive sensory-

driven plasticity is involved in widespread brain areas during

unilateral hearing processing. The UHL not only reshapes the

activity of the sensory cortex but also alters the regional and circuit

functional organization of the higher order control networks.

Plasticity of Sensory Cortices
As ReHo during resting state might be the foundation of the

activity change during task-state [56], the decreased ReHo of

bilateral calcarine cortices in UHL compared with controls may

present the baseline abnormality of sensory cortices in UHL

during resting state. The calcarine cortex processes visual

information and is considered to be the primary visual cortex.

Decreased ReHo of the bilateral calcarine cortices in UHL groups

compared with controls may represent an adaptation to engage

other sensory systems to compensate for the partial loss of hearing

[57]. It has been suggested that sensory deprivation in one

modality (auditory) could affect the functions of the remaining

modalities (visual) [6,58] [59]. Previous research of auditory brain

plasticity on congenitally deaf individuals suggested that early

deafness is associated with activation and hyper-functionality in

the visual cortex when having auditory stimulation [58,60], which

implies cross-modal plasticity. In the current study, all the hearing

damage participants were post-lingual UHL adults, and they were

not in the critical onset of age for cortical development. Therefore,

the progressive UHL caused by AN may influence the calcarine

cortex and induce reorganization of visual processing. The

reduced ReHo in calcarine cortex may suggest the local

reorganization in visual areas. The progressive UHL disrupted

the integrity of sensory perceptions, and the visual cortex might

not able to reorganize promptly but be in the process of

remodeling showing as the reduced functional coherences. We

inferred that the decreased ReHo may reflect the functional

differentiation for better visual perception in order to cover the

hearing deficits. To not, however, this does not mean a causal

relationship between decreased ReHo and dysfunction of the

visual region. Moreover, we did not find a significant difference in

RSFC of bilateral calcarine cortex amongst three groups in

current study. We propose that this may be due to the fact that

UHL participants largely preserve the ability to capture auditory

information in the unaffected ear. UHL may only cause local

functional changes in visual areas, rather than long distance

reorganization related to cross-model plasticity.

Cortical Plasticity of the Unilateral Hearing Loss Patients
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It is worth noting that, the auditory cortex is expected to be

reorganized during UHL intuitively. In current study, attenuation

of hearing input leads to a functional in-coordination between

auditory perception and goal-directed attention as long as we

assess the RSFC for auditory areas particularly (see Text S1,Table

S2, Fig, S4 and Fig. S5). However, The UHL patients in current

study were all postlingual deaf and their hearing loss started after

the critical onset for cortical development. In addition, the UHL

individuals did not suffer from totally deafness for a long enough

duration. Previous study proved that the age of the onset of

deafness is critical to plasticity of deaf brain[41]. Therefore, we

could only find the impact on the auditory areas of UHL showing

as a trend of alteration of ReHo and RSFC in regions related to

auditory function such as temporal cortex (Fig. S1, Fig. S2 and Fig.

S3). Nevertheless, the plastic changes in auditory cortex is too mild

to pass the strict multiple-comparisons correction of ANOVA. The

intrinsic activity changes within auditory cortex of UHL may be

little but complex which needs to investigated by further studies.

Functional Reorganization in the Higher Order Control
Network

In this study, key nodes in the functional networks of CCN and

DMN, such as rAI, lPHC, rather than primary sensory areas

demonstrated both abnormal regional and circuit activity/

connectivity in UHL, supporting our hypothesis that compensa-

Figure 1. Group difference in ReHo revealed by ANCOVA. Significant differences, location and ReHo values of each group in right anterior
insular cortex (rAI) (A), left parahippocampal cortex (lPHC) (B), left calcarine cortex (C) and right calcarine cortex (D). The bar and error bar represent
the mean value and SD, respectively, of the ReHo values in the region. * p,0.05, corrected. UHL, unilateral hearing loss, NC, normal controls.
doi:10.1371/journal.pone.0096126.g001

Table 2. Group difference in ReHo among the three groups of participants.

Location Peak MNI coordinate (mm) Volume Post hoc analysis

F-value x y z (mm3) (Tukey p,0.05)

right AI 15.41 48 18 26 39 Left UHL and Right UHL.NC

left PHC 17.22 221 221 218 46 Right UHL.Left UHL and NC

left calcarine cortex 11.87 221 248 23 43 Left UHL and Right UHL,NC

Right calcarine cortex 16.00 21 269 3 77 Left UHL and Right UHL,NC

Abbreviations: AI = anterior insular cortex, PHC = parahippocampal cortex, UHL = unilateral hearing loss, NC = normal controls.
doi:10.1371/journal.pone.0096126.t002

Cortical Plasticity of the Unilateral Hearing Loss Patients
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tory remodeling of higher order cognitive processes was involved

in asymmetric auditory impairment.

Remodeling of the CCN. In the current study, rAI was

demonstrated to show increased ReHo, increased strength of

negative RSFC with pACC and MPFC in UHL participants

compared to control subjects, supporting the notion that UHL

lead to hyperactivity of rAI with local and long-distance plastic

changes, which may suggest remodeling in cognitive control

regions necessary for auditory processing of unilateral hearing

damage.

It is recognized that complex auditory information processing

may be hindered by UHL, such as phonological processing,

musical perception, vocal communication sounds, and spatial and

temporal auditory processing [23–26]. Virtually, all these high-

level auditory processes rely on the cognitive control and

conditioning of cognitive process [61,62]. The AI plays an

important role in several independent but interrelated CCN

simultaneously [53,63,64]. For instance, AI serves in the

cinguloopercular network which contribute to flexible control of

human goal-directed behavior [54,65,66], as well as in salience

networks which are required for detecting and orienting to salient

external stimuli and internal events [31,67,68]. These networks

have been proposed to exhibit altered intrinsic activity or

connectivity in the AI due to compromised cognitive control in

a number of pathological situations [69,70] [71] [68,72,73]. These

features serve as the theoretical basis for the speculation that

alterations of spontaneous fMRI BOLD signals in rAI might due

to the harder cognitive control as a compensation to the partial

hearing loss in UHL.

In addition, the insula is also a critical region for the integration

of information from diverse functional systems. It connects

functional networks together to make perceptual decisions and

support complex behavior [67,74–76]. The AI integrates bottom-

up signaling with top-down predictions to generate current

awareness state [77–81]. Moreover, the AI is also believed to be

novelty-sensitive region for involuntary attention to events in the

sensory environment [82,83]. For UHL individuals, the asymmet-

rical auditory deficits is aberrant from the vast and continuous

stream of normal bilateral auditory stimuli, which might engage

the rAI mediating cognitive control as well as engage different

cognitive processes to compensate the perceptional deficits.

Taken together, in line with the hypothesis that altered

functional connectivity reflects the brain characteristic in hearing

loss [11,19,84], we speculated that the hyperactivity of the rAI and

its abnormal RSFC in UHL as an indication of the alteration in

cognitive control, namely, that reorganization in UHL individuals

Figure 2. Group difference in resting state functional connectivity with rAI (the seed region) revealed by ANCOVA. The significant
differences were shown in right medial prefrontal cortex (rMPFC) (A), right postcentral gyrus (rPCG) (B) and pregenual anterior cingulate cortex
(pACC) (C). The bar and error bar represent the mean value and SD, respectively, of the functional connectivity values in the region. * p,0.05,
corrected.
doi:10.1371/journal.pone.0096126.g002
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tend to favor efforts to resume the effective perception by

remodeling the cognitive processing. However, future fMRI

studies employing cognitive tasks are needed to further clarify

the specific modalities of such cognitive reorganization.

Alteration of regional and circuit resting-state activity in

DMN. Further, we found increased ReHo in the lPHC as well as

enhanced positive RSFC between the lPHC and right angular

gyrus, right precuneus and left cuneus in UHL compared to

control subjects, suggesting reorganization within the DMN. The

DMN, with all the above described regions as important nodes

[52], is a task-negative, cross- spatial and intrinsically organized

network in the brain. Numerous studies have found that the DMN

remains stable amongst healthy individuals [85,86] and can be

affected by neurological and psychiatric diseases [87,88]. In

healthy subjects, the DMN involved in the integration of self-

monitoring, autobiographical, and related social cognitive func-

tions [86,89]. The anti-correlated interactions between cognitive-

demanding regions and the DMN are intrinsic through the human

brain, occurring naturally and spontaneously [86], and it is

correlated to a more consistent behavioral performance [90] as

well as exact control of efficient goal-directed behavior and

focused attention [91]. Viewed from this context, the increased

positive RSFC between core nodes in DMN, which consistent with

the enhanced correlation among key nodes within DMN in ROI-

based functional connectivity analysis, indicated hyperfunction of

Figure 3. Group difference in resting state functional connectivity with lPHC (seed region) revealed by ANCOVA. The significant
differences are shown in (A) right insula, (B) supplementary motor area (SMA), (C) right angular gyrus (rAG), (D) left cuneus and (E) right precuneus.
The bar and error bar represent the mean value and SD, respectively, of the functional connectivity values in the region. * p,0.05, corrected.
doi:10.1371/journal.pone.0096126.g003
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DMN in UHL participants, suggesting that UHL induced an

alteration in the intrinsic circuit for DMN in UHL.

Reorganization of the connectivity between CCN and

DMN. In addition, we found increased strength of negative

RSFC between the important nodes of DMN (MPFC, rAG and

lPHC) and rAI in UHL participants compared to their control

counterparts. Enhanced connectivity between CCN and the DMN

was also demonstrated by the graph theory analysis. The alteration

in RSFC has been demonstrated due to changes in the different

sensory experience [32,44,45], such as blindness. In this study, the

enhanced RSFC between nodes of CCN and DMN may indicate

the more rapid and intensive coordination between these two

networks for assisting the detection of dynamic environment and

compensating the perceptional deficit resulting from UHL [90].

Moreover, the rAI plays a critical and causal role in switching

between activation and deactivation of large-scale brain networks

involving the central-executive network and the DMN [92]. The

enhanced synchronization between lPHC and rAI in UHL may

also indicate a prompt switching from resting state to an activated

state in order to facilitate the cognitive process to adapt to

attenuation of hearing information input. It would be in line with

the notion that neural synchrony between spatially distinct regions

helps to coordinate information processing in those regions [93].

Thus, changes within and between functional networks during

resting-state might be an indicator of abnormal task activation and

deactivation patterns and task performances, which encourages

further investigations using task-based fMRI.

No Correlation between Intrinsic Resting-state Activity
and Degree and Duration of Hearing Loss

Neither ReHo nor RSFC showed a significant correlation with

hearing loss duration or auditory ratings. The null findings might

be due to some possible reasons. Firstly, a previous study has

suggested that the influence of plasticity may be more so

influenced by the onset of (pre- or post-lingually) the patients

acquires a profound hearing impairment rather than the duration

of auditory deprivation [94]. Secondly, duration of hearing loss in

the current study was reported by the patients potentially be with

subjective bias, and the unit for duration of hearing loss (months)

may not offer enough temporal resolution to detect correlations

between hearing loss duration and resting-state brain activity. It is

also possible that the correlations between resting-state activity and

degree or duration of hearing loss may not be linear.

The Lateralization of UHL
For most of the result, the UHL groups showed significant

differences compared to normal control groups with non

significant differences between left and right UHL groups.

However, most reorganizations of ReHo and RSFC found in

the current study were more pronounced in left UHL patients

than right UHL ones, although not significant statistically. This

may have resulted from the fact that greater resilience against

reduced hearing damage in right ear [95]. The left ear pathway

demonstrates a stronger contralateral effect during monaural

acoustic stimulation [96,97]. In other words, the right ear delivers

information to both hemispheres more evenly, while the left ear

delivers information more lateralized. Accordingly, once the

normal pattern was interfered by UHL, the dysfunction of left

ear interrupt the brain more significantly. Meanwhile, the right

UHL participants show more stabilization in cortex.
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Conclusion

The present study confirms and extends the previous findings of

reorganizations in the brain associated with auditory damage. The

reduced regional homogeneity in calcarine cortex suggested a

dysfunctional reorganization for post-lingual UHL patients in

sensory cortex. Furthermore, both regional and circuit plastic

changes in rAI and lPHC which involving in high-order cognitive

networks may indicate the adapted cognitive process for attenu-

ation of hearing information input. Taken together, abnormal

resting-state brain activity in UHL participants suggests that brain

areas involved in cognitive control as well as the sensory cortices,

are modulated by asymmetric auditory function preservation.

Supporting Information

Figure S1 One-sample t-maps of ReHo in the whole brain for

each of the three groups (p,0.05, corrected). L and R represent

the left and right hemispheres, respectively. The results were

mapped onto the cortical surfaces using in-house developed

BrainNet viewer software (www.nitrc.org/projects/bnv/). UHL,

unilateral hearing loss, NC, normal controls.

(TIF)

Figure S2 One-sample t-maps of resting-state functional con-

nectivity of the right anterior insular cortex in the whole brain for

each of the three groups (p,0.05, corrected). L and R represent

the left and right hemispheres, respectively. The results were

mapped onto the cortical surfaces using in-house developed

BrainNet viewer software (www.nitrc.org/projects/bnv/).

(TIF)

Figure S3 One-sample t-maps of resting-state functional con-

nectivity of the left parahippocampal cortex in the whole brain for

each of the three groups (p,0.05, corrected). L and R represent

the left and right hemispheres, respectively. The results were

mapped onto the cortical surfaces using in-house developed

BrainNet viewer software (www.nitrc.org/projects/bnv/).

(TIF)

Figure S4 Group difference in resting state functional connec-

tivity with left HG(the seed region) revealed by ANCOVA. The

significant differences were shown in left medial frontal gyrus

(MPG) (A) and right superior parietal lobule (SPL) (B). The bar

and error bar represent the mean value and SD, respectively, of

the functional connectivity values in the region. * p,0.05,

corrected.

(TIF)

Figure S5 Group difference in resting state functional connec-

tivity with right HG (the seed region) revealed by ANCOVA. The

significant differences were shown in left medial frontal gyrus

(MFG) (A). The bar and error bar represent the mean value and

SD, respectively, of the functional connectivity values in the

region. * p,0.05, corrected.

(TIF)

Figure S6 The distribution of connections with significant group

effects in the functional connectivity strength among the three

groups at p,0.01 (uncorrected). The thicknesss of connections

indicate the significance of between-group differences. ROIs in

purple belong to DMN while ROIs in blue belong to CCN.

Connections in gray indicate those connections were between

DMN and CCN (A–C), while connections in purple indicate those

connections were within DMN [ipsilateral connetions (D–E),

contralateral connections (F–J)]. For each connection, the bar and

error bar represent the mean value and SD, respectively, of the

functional connectivity strength in each group. Post hoc tests

showed that all the ROIs have increased functional connectivity

strength in the left UHL patients versus the controls. Three of

these six ROI, including the rIPL, rTPJ and rAI/fO showed

reduced functional connectivity strength in the right UHL patients

compared with the left ones. Only one region (lHF) showed

increased functional connectivity strength in right UHL patients

compared to normal controls. * p,0.05. The connecitons were

mapped onto the cortical surfaces using in-house BrainNet viewer

software (www.nitrc.org/projects/bnv/).

(TIF)

Figure S7 The distribution of brain regions with significant

group effects in the functional connectivity strength among the

three groups at p,0.05 (uncorrected). The sizes of ROIs indicate

the significance of between-group differences. ROIs in purple

belong to DMN while ROIs in blue belong to CCN. For each

ROI, the bar and error bar represent the mean value and SD,

respectively, of the functional connectivity strength in each group.

Post hoc tests showed that all the ROIs have increased functional

connectivity strength in the left UHL patients versus the controls.

Three of these six ROI, including the rIPL, rTPJ and rAI/fO

showed reduced functional connectivity strength in the right UHL

patients compared with the left ones. Only one region (lHF)

showed increased functional connectivity strength in right UHL

patients compared to normal controls. * p,0.05. The ROIs were

mapped onto the cortical surfaces using in-house BrainNet viewer

software (www.nitrc.org/projects/bnv/). For the abbreviations of

the ROIs, see Table S1.

(TIF)

Table S1 Regions of interest in graph analysis.

(DOC)

Table S2 Group difference in functional connectivity with seed

regions at primary auditory cortex.

(DOC)

Text S1

(DOC)
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