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 i  g  h  l  i g  h  t  s

To examine  adult  anxious  depression  patients  using  ALFF  and  fALFF  method.
Increased  ventral  cingulate  activity  might  be related  to neurobiology  of  anxious  depression.
Increased  insular  activity  might  be related  to  the  core  symptoms  of anxious  depression.
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nxious depression
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unctional magnetic resonance imaging
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ractional amplitude of low-frequency
uctuation (fALFF)
mplitude of low-frequency fluctuation

ALFF)

a  b  s  t  r  a  c  t

Objective:  Anxious  depression  is  a distinct  clinical  subtype  of major  depressive  disorder  (MDD)  charac-
terized  by  palpitations,  somatic  complaints,  altered  interoceptive  awareness,  high  risk  of  suicide,  and
poor response  to  pharmacotherapy.  However,  the  neural  mechanisms  of anxious  depression  are  still  not
well understood.  In this  study  we  investigated  changes  in neural  oscillation  during  the  resting-state  of
patients  with  anxious  depression  by  measuring  differences  in the amplitude  of  low-frequency  fluctuation
(ALFF).
Methods:  Resting-state  functional  magnetic  resonance  imaging  was  acquired  in 31  patients  with  anx-
ious  depression,  18  patients  with  remitted  depression,  as well  as  68  gender-  and  age-matched  healthy
participants.  We  compared  the  differences  both  in  the  ALFF  and  fractional  ALFF  (fALFF)  among  the  three
groups.  We also examined  the  correlation  between  the  ALFF/fALFF  and  the  severity  of  anxiety  as  well  as
depression.
Results:  Anxious  depression  patients  showed  increased  ALFF/fALFF  in the  right  dorsal  anterior  insular
cortex  and  decreased  ALFF/fALFF  in  the  bilateral  lingual  gyrus  relative  to  remitted  depression  patients
and  healthy  controls.  The  increased  ALFF  in the  dorsal  anterior  insula  was  also  positively  correlated  with
stronger  anxiety  in the  anxious  depression  group.  Anxious  depression  patients  also  displayed  increased
Please cite this article in press as: Liu C-H, et al. Abnormal spontane
cortices in anxious depression. Behav Brain Res (2014), http://dx.doi.o

fALFF  in  the  right  ventral  anterior  cingulate  cortex  (ACC)  compared  to  remitted  depression  patients  and
healthy  controls.
Conclusions:  Our  results  suggest  that  alterations  of  the  cortico-limbic  networks,  including  the  right  dorsal
anterior  insula  and  right  ventral  ACC,  may  play  a critical  role  in the physiopathology  of anxious  depression.
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1. Introduction

Anxious depression is a common clinical subtype of major
ous neural activity in the anterior insula and anterior cingulate
rg/10.1016/j.bbr.2014.11.047

depressive disorder (MDD) characterized by dysphoric mood, dis-
turbed sleep, somatic complaints, altered interoceptive awareness,
and increased morbidity [1–3]. Compared with depression without Q3
anxiety, anxious depression has a greater severity of depressive
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llness, longer illness chronicity, and a higher risk of disability
nd suicidal tendency [4–6]. Anxious depression is also more
ikely to exhibit somatic symptoms, to take twice as long to
ecover from a depressive episode, and to have lower remis-
ion rates [7]. Despite the poor clinical outcomes and increasing
ocial and economic burdens of anxious depression [8], little
ttention has been paid to the neurobiology of the disorder.
here is a compelling need to investigate the underlying neural
echanisms of anxious depression to develop a better target for

reatment.
The existing psychological models of anxious depression (such

s the valence-arousal and approach-withdrawal models) are
ocused on anxiety-related hyperarousal. However, limited neu-
oimaging studies in literature have found widespread structural
nd functional changes in anxious depression within the cortico-
imbic circuits including the anterior cingulate cortex (ACC),
refrontal cortex, middle temporal gyrus, and insula [2], which
re largely overlapped with the regions involved in major depres-
ion. It is unclear about which structural or functional changes
bserved in the literature are specifically related to anxious depres-
ion and which to depression in general. The only functional MRI
tudy that has compared depression with high versus low anx-
ety had a small sample size and studied only older adults [9].
his study revealed that elderly depressed subjects with high
nxiety showed stronger functional connectivity in the posterior
egions of the default mode network (e.g., the precuneus), and
ower functional connectivity in the anterior regions of the default

ode network (e.g., the rostral ACC, medial prefrontal cortex and
rbitofrontal cortex) compared with low anxiety depressed sub-
ects during resting-state using posterior cingulate cortex from
utomated anatomical labeling template as seed point. Although
unctional connectivity can disclose network changes related to
nxious depression, it does not address which changes and regions
re related to primary deficits in the disorder. Given the auto-
omic nervous deficits associated with anxious depression and
he insula’s role in interception [10], activity change in the insula

ight be associated with the anxiety-related symptoms of anx-
ous depression [11,12]. To test this hypothesis, we examined the
mplitude of low-frequency fluctuations (ALFF) and fractional ALFF
fALFF) during resting-state which allowed us to compute the
trength of neural oscillation in each voxel instead of connectivities
etween regions.

The ALFF and fALFF are thought that can reflect the strength
f intrinsic spontaneous neuronal activity [13,14]. ALFF measures
he regional intensity of spontaneous fluctuations by integrated
he square root of power spectrum in a low-frequency range
15] and fALFF is the ratio between the low frequency band and
he entire detectable frequency range in a given signal with-
ut filtering [14]. ALFF reflects the absolute strength or intensity
ithin a specific low frequency range, whereas fALFF repre-

ents the relative contribution of the low frequency band to the
hole detectable frequency range in a given signal [16]. Abnor-
al  ALFF and fALFF measurements have been found in a number

f psychiatric disorders including Alzheimer’s disease [17] and
ajor depression [16,18]. Therefore, in this study, we used ALFF

nd fALFF to reveal neural alteration which is related to the
athology of anxious depression. In addition, in order to com-
are the changes in the ALFF and fALFF of anxious depression
atients with those of healthy controls, we also included remit-
ed depression patients to investigate the anxiety depression state
ffect. We  also examined whether anxiety severity was specifically
orrelated with the changes in the ALFF and fALFF measure-
Please cite this article in press as: Liu C-H, et al. Abnormal spontane
cortices in anxious depression. Behav Brain Res (2014), http://dx.doi.o

ents. Our hypothesis was  that anxious depression patients might
ave an altered ALFF or fALFF in the insula and cortico-limbic
ircuits.
 PRESS
esearch xxx (2014) xxx–xxx

2. Materials and methods

2.1. Participants

This study was  approved by the Institution of Review Boards of
Beijing Anding Hospital, Capital Medical University and State Key
Laboratory of Cognitive Neuroscience and Learning, Beijing Nor-
mal  University. Participants included 31 patients diagnosed with
anxious depression, 18 patients diagnosed with remitted depres-
sion and 69 healthy controls. All participants were right-handed,
determined by the Edinburgh Inventory of handedness [19]. The
criteria of selection for patients were as follows (also described in
[18]): (1) between the ages of 18 and 60 years and has the abil-
ity to give voluntary informed consent; (2) meets the Structured
Clinical Interview DSM-IV Axis I Disorders (SCID) diagnostic crite-
ria for MDD; (3) no other psychiatric illnesses (e.g., schizophrenia,
obsessive–compulsive disorder, and no alcohol or substance abuse
or dependence) and no neurological illnesses; and (4) able to be
scanned by MRI. The Hamilton Depression Rating Scale (HAMD)
[20] was used to measure depressive symptoms on the day of scan-
ning. Patients were grouped into anxious depression and remitted
depression based on the anxiety/somatization factor score of the
Hamilton Rating Scale for Anxiety (HAMA) and the HAMD. Anxious
depression was defined as a total HAMA score of 15 or higher and
a total HAMD score of 17 or higher, whereas the remitted depres-
sion was defined as a total HAMA score of eight or lower and a
total HAMD score of eight or lower [9,21]. The healthy controls
were recruited from the local community. The non-patient edi-
tion of the Structured Clinical Interview for the DSM-IV [22] was
used to screen the healthy controls. Participants were excluded as
healthy controls if they reported a history of neurological or neu-
ropsychiatric disorders, or a positive family history of psychiatric
disorders.

2.2. Image acquisition

Two hundred and forty contiguous gradient echo planar
imaging (EPI) functional volumes were acquired with 33 axial
slices, with parameters of repeat time (TR) = 2000 ms;  echo time
(TE) = 30 ms;  flip angle (FA) = 90◦; matrix size = 64 × 64; thick-
ness/gap = 3.5/0.6 mm;  and sequence duration = 480 s for each
subject using a Siemens Trio 3.0 T scanner at the National Key Lab-
oratory for Cognitive Neuroscience and Learning, Beijing Normal
University, Beijing, China. One hundred and twenty-eight (128)
slices of structural 3D-T1 weighted images were also acquired
sagittally without gaps (TR = 2530 ms; TE = 3.39 ms;  slice thick-
ness = 1.33 mm;  field of view (FOV) = 256 mm × 256 mm;  in-plane
resolution = 256 × 256; inversion time (TI) = 1100 ms; voxel dimen-
sion = 1 mm × 1 mm × 1.33 mm;  and FA = 7◦). All participants were
instructed to close their eyes and relax but not to fall asleep.

2.3. Data preprocessing

EPI data was first preprocessed using Data Processing Assistant
and Resting-State fMRI (DPARSF) [23] based on statistical para-
metric mapping 8 (SPM8, http://www.fil.ion.ucl.ac.uk/spm) using
MATLAB R2009a (The Mathworks, Natick, MA). The first 10 volumes
of functional time points were discarded to reach stability of initial
MRI  signal and allow the participants to adapt to the MRI acqui-
sition environment. The remaining 230 scans were slice-timing
ous neural activity in the anterior insula and anterior cingulate
rg/10.1016/j.bbr.2014.11.047

excluded from further analysis due to excessive head motion (head
movements exceeded 2 mm in translation or 2◦ of rotation). Next,
the motion corrected functional volumes were spatially normalized
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sing the standard EPI template and resampled to the voxel size
f 3 mm × 3 mm × 3 mm.  Subsequently, functional images were
patially smoothed with a 4 × 4 × 4 full-width at half maximum
FWHM) kernel. Finally, the linear trend of the time series was
etrended and band-pass filtering (0.01–0.08 Hz) was  performed
o remove the influence of low-frequency drift and high-frequency
hysiological noise.

.4. ALFF and fALFF analysis

The filtered time course were converted to the frequency
omain using fast Fourier transform (FFT) [24]:

(t) =
N∑

k=1

(ak cos(2�fkt) + bk sin(2�fkt))

The ALFF [15] is the averaged squared root of the Fourier coeffi-
ient across 0.01–0.08 Hz at each voxel as:

LFF =
∑

k:f (k) ∈ [0.01,0.08]

√
a2

k
(fk) + b2

k
(fk)

N

The fALFF [25] is the ratio of the amplitude (0.01–0.08 Hz) to
hat of the entire frequency range (0–0.25 Hz):

ALFF =
∑

k:f (k) ∈ [0.01,0.08]

√
a2

k
(fk)+b2

k
(fk)

N∑N
k=1

√
a2

k
(fk)+b2

k
(fk)

N

The standardized ALFF and fALFF of each voxel was calculated
y taking the degree of its raw ALFF or fALFF value and dividing

t by the individual mean ALFF or fALFF value of the whole brain
16]. Finally, the smoothed standardized individual ALFF and fALFF

aps were used for statistical analysis.

.5. Statistical analysis

One-way analysis of variance (ANOVA) was performed to deter-
ine the ALFF and fALFF differences among the three groups

anxious depression patients, remitted depression patients, and
ealthy control subjects) using the statistical analysis panel imple-
ented in the Resting State fMRI Data Analysis Toolkit (REST)

with age, gender and years of education as covariates) [26]. The
orrected threshold was determined using the AlphaSim pro-
ram [27], with the threshold set at p < 0.01 and a cluster size
432 mm3 (16 voxels, with a gray matter mask). As fALFF can effec-
ively suppress the influence of motion and pulsatile effects and
ignificantly improve the specificity and sensitivity of detecting
pontaneous regional fluctuations [14,25,28], the aforementioned
ALFF ANOVA results (rather than the ALFF ANOVA results) were
sed to identify the cerebral regions showing significant group dif-
erences as regions of interest (ROIs) [16,28,29]. Mean ALFF and
ALFF values were extracted from each ROI for anxious depres-
ion subjects, remitted depression subjects, and healthy controls
sing REST. Since the HAMD and HAMA scores are highly corre-

ated (r = 0.912, p < 0.001), we did not run the correlation separately
or the HAMD scores. To investigate the relationship between the

ean ALFF or fALFF values and a subject’s clinical profile (such as
isease duration, number of depressive episodes, and HAMA total
cores), Pearson correlation coefficient analyses were performed
n the pooled depression patients, including anxious depression
nd remitted depression patients with significant value at p < 0.008
Please cite this article in press as: Liu C-H, et al. Abnormal spontane
cortices in anxious depression. Behav Brain Res (2014), http://dx.doi.o

multiple comparisons correction). To examine psychotropic medi-
ation effects, all depression patients (including anxious depression
nd remitted depression) were assigned to receive antidepressant
edication (n = 42) and not medicated (n = 7). Two sample t-tests
Fig. 1. Analysis of variance (ANOVA) differences in fractional amplitude of low-
frequency fluctuations (fALFF) among the three groups. The left side of the figure
corresponds to the right side of the brain.

were adopted to identify differences between depression patients
on psychotropic medication, depression patients off psychotropic
medication, and healthy controls.

3. Results

3.1. Demographic and clinical data

As shown in Table 1, there were no significant differences in the
participants’ ages or sex (all p > 0.05) among the three groups. How-
ever, there were significant differences in educational level among
the three groups (p < 0.05), and significant differences between the
HAMD and HAMA scores of the anxious depression and remit-
ted depression groups. No significant difference was observed in
duration of illness or number of depressive episodes between
the anxious depression and remitted depression groups (t = −0.35,
p = 0.73; t = 0.48, p = 0.64).

3.2. Group differences in fALFF and ALFF

The one-way ANOVA on fALFF revealed six clusters with signif-
icant differences across the three groups of participants, including
right ventral ACC, right dorsal anterior insula, left middle tempo-
ral gyrus, right superior temporal gyrus, and bilateral lingual gyrus
(Fig. 1 and Table 2). We  also perform our analysis with one-way
ANOVA on ALFF as used in Zang et al. [15]. As shown in Fig. 2 and
Table 2, the results also showed cortico-limbic dysfunction, includ-
ing the left middle temporal gyrus. Fig. 3 illustrates the results of
the six significant clusters from the voxel-wised analysis and com-
ous neural activity in the anterior insula and anterior cingulate
rg/10.1016/j.bbr.2014.11.047

pared ALFF and fALFF among the three groups directly. Compared
with healthy control subjects, anxious depression patients showed
a significantly decreased ALFF and fALFF in the left middle tempo-
ral gyrus, bilateral lingual gyrus, and an increased ALFF and fALFF
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Table  1
Group demographics and clinical measures.

Measure (mean ± SD) Anxious depression
patients (n = 31)

Temitted depression
patients (n = 18)

Healthy controls (n = 68) Value p value

Age, years 36.35 ± 13.28 36.33 ± 12.12 35.55 ± 12.43 0.56 0.946#
Education level (years) 14.84 ± 3.10 15.00 ± 3.31 14.37 ± 3.21 0.406 0.667#
Sex  (male/female) 14/17 8/10 34/34 0.299 0.861�
HAMD 22.61 ± 4.48 4.78 ± 2.88 15.122 0.00*
HAMA 22.94 ± 6.43 4.00 ± 2.4 14.716 0.00*
Duration of illness (years) 7.60 ± 9.44 8.50 ± 7.36 −0.349 0.729*
Number of depressive episodes 2.29 ± 1.74 2.06 ± 1.51 0.478 0.64*
Antidepressants 26 16

SSRI 19 13
SNRI 2 1
Mitazapine 1 0
Trazodone 2 0
TCA 1 1
Flupentixol and melitracen 1 1

Antipsychotics 3 4
Quetiapine 2 1
Resperidone 1 2
Aripiprazole 0 1

Benzodiazepines 3 1
Lonazepan 2 0
Oxazepam 1 1

Medication-free 5 2
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bbreviations: SD: standard deviation; HAMD: Hamilton depression.
ating scale. # indicates p values for one-way ANOVA and * indicates p values for tw

n the right dorsal anterior insula, right superior temporal gyrus,
nd right ventral ACC. Anxious depression patients also displayed
ncreased ALFF in the right dorsal anterior insula and decreased
LFF in the bilateral lingual gyrus relative to the remitted depres-
ion patients. However, when compared with remitted depression
atients, anxious depression patients demonstrated significantly

ncreased fALFF in the right ventral ACC, right dorsal anterior insula,
nd right superior temporal gyrus, and decreased fALFF in the left
iddle temporal gyrus and bilateral lingual gyrus. The remitted

epression patients and healthy controls were not significantly dif-
erent in the ALFF or fALFF in left middle temporal gyrus, bilateral
ingual gyrus, the right dorsal anterior insula, right ventral ACC, or
ny other brain regions.

.3. Psychotropic medication effects

There was no obvious difference between depression patients
Please cite this article in press as: Liu C-H, et al. Abnormal spontane
cortices in anxious depression. Behav Brain Res (2014), http://dx.doi.o

n psychotropic medication and those off psychotropic medica-
ion. Compared to the healthy controls, the depression patients who
eceive psychotropic medication showed decreased ALFF/fALFF in
he left lingual gyrus and left middle temporal gyrus and increased

able 2
rain regions showing ANOVA differences in the fALFF/ALFF values among the anxious de

Brain region Side BA MNI  co

x 

fALFF
Ventral ACC R 11.24 6 

Dorsal anterior insula R 42 

Middle temporal gyrus L 37 −51 

Superior temporal gyrus R 72 

Lingual gyrus R 18 

Lingual gyrus L 21 −15 

ALFF
Middle temporal gyrus L 18 −63 

Middle occipital gyrus R 33 

Lingual gyrus L −12 

Calcarine L −24 

Cuneus R 12 

bbreviations: ANOVA: One-way analysis of variance; fALFF: fractional amplitude of low
CC:  anterior cingulate cortex; L = Left; R = Right.
ple t-tests. � indicates p values for chi-square test.

ALFF/fALFF in the right ventral ACC and right dorsal anterior insula
(Fig. 4).

3.4. Correlations between ALFF/fALFF values and clinical data

There was  a significantly positive correlation in the ALFF and
fALFF values of the right dorsal anterior insula and the HAMA score
(ALFF, r = 0.536, p < 0.001; fALFF, r = 0.519, p < 0.001) in the pooled
depression group (Fig. 5). We  also found significantly positive cor-
relations between regional fALFF values and the HAMA scores in
the right ventral ACC in the pooled depression group (r = 0.460,
p = 0.001) (Fig. 6). The detailed correlation results between the
fALFF measurements and HAMA scores are presented in Table 3. No
brain loci demonstrated significant correlations with the number
of depressive episode or duration of illness.
ous neural activity in the anterior insula and anterior cingulate
rg/10.1016/j.bbr.2014.11.047

4. Discussion

In this study, we  used ALFF and fALFF measurements to exam-
ine whole-brain spontaneous activity in patients with anxious

pression, nonanxious depression, and healthy control groups.

ordinates Voxels F value

y z

30 −6 16 8.58
6 15 20 11.93

−69 0 45 12.50
−30 12 30 9.80
−93 6 16 8.45
−99 0 34 12.24

−36 −3 20 6.88
−96 −6 40 9.13

−102 −3 44 10.11
−63 9 16 8.48
−72 21 38 7.96

-frequency fluctuation; BA: Brodmann area; MNI: Montreal Neurological Institute;
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ig. 2. ANOVA differences in the amplitude of low-frequency fluctuations (ALFF)
alues among the three groups. The left side of the figure corresponds to the right
ide of the brain.

epression. We found that patients with anxious depression had
ncreased ALFF and fALFF values in the right dorsal anterior insula
nd decreased ALFF and fALFF values in the bilateral lingual gyrus
elative to both, patients with remitted depression and healthy
ontrols. The increased ALFF/fALFF values in the anterior insula
ositively correlated with severe anxiety symptoms in the pooled
epression group. Moreover, patients with anxious depression dis-
layed increased fALFF values in the right ventral ACC, which
ositively correlated with the HAMA scores. These findings sup-
orted our hypothesis that aberrant intrinsic neural fluctuations in
atients with anxious depression are mainly located within corti-
olimbic circuits, especially the insula and ventral ACC, which is
mportant for automatic emotion regulation, decision making, and
ognitive processes.

The anterior insula is an important cortical structure in the
Please cite this article in press as: Liu C-H, et al. Abnormal spontane
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alience network, which is thought to detect internal and external
timuli and to initiate switches between self-referential processing
n the default mode network and goal-directed, higher-level

able 3
egions which showed significantly correlation between their fALFF intensity and
AMA scores.

Brain regions Side r p

Positive correlation
Ventral anterior cingulate Right 0.460 =0.001
Dorsal anterior insula Right 0.519 <0.001
Superior temporal gyrus Right 0.575 <0.001

Negative correlation
Middle temporal gyrus Left −0.410 =0.001

bbreviation: fALFF, fractional amplitude of low-frequency fluctuation; HAMA:
amilton rating scale for anxiety.
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cognitive effort in the central executive network [30,31]. There-
fore, increased ALFF/fALFF values in the right anterior insula, as
well as its significant correlation with the severity of anxiety,
suggested an involvement of the right anterior insula in the
pathology of the anxiety symptoms in anxious depression. Studies
in literature also support our speculation. Baur et al. [32] reported
that connectivity between the subregions of the insula and the
amygdala is related to anxiety levels in healthy subjects. With
proton magnetic resonance spectroscopy, Rosso et al. [12] found
reduced levels of gamma-aminobutyric acid in the right anterior
insular cortex in adults with posttraumatic stress disorder, which
is associated with significantly higher state and trait anxiety. Avery
et al. [33] reported decreased activity in the bilateral dorsal midin-
sular cortex during interoceptive attention tasks in unmedicated
patients with depression relative to healthy controls. They also
found that increased activity in the bilateral midinsula correlated
with the severity of depression and the somatic symptoms. The
findings in the above studies support those of the present study
in suggesting that increased intrinsic neural oscillations in the
anterior insula are a core characteristic of anxious depression.

Patients with anxious depression also demonstrated signifi-
cantly increased fALFF values in the right ventral ACC relative
to patients with remitted depression and healthy controls. The
ventral ACC is an important region thought to be pivotal to the
regulation of affect, visceromotor function, emotional processing,
somatosensory processing, and self-referential processing [34].
There is abundant evidence in the literature of changes in this
region in depression and anxiety disorders. For example, Drevets
et al. [35] reported increased ventral ACC metabolism during
depressed relative to remitted phases in the same subjects with
major depression. Sheline et al. [36] reported a positive associa-
tion between dorsal nexus (including a portion of the subgenual
ACC) connectivity values and depression severity. Greicius et al.
[37] also showed increased subgenual cingulate activity in depres-
sion. However, there are also seemingly contradictory findings. A
study on panic disorder found reduced volume of the right ven-
tral ACC [38]. Decreased subgenual ACC-precuneus connectivity in
adolescent depression correlated with higher levels of depression
severity [39]. However, decreased volume and decreased func-
tional connectivity may  not necessarily imply decreased regional
activity. Importantly, the increased fALFF values in the ventral
ACC were associated with the severity of anxiety, reflected by
the HAMA scores in our study. Consistent with evidence from
previous studies, increased resting state activity in the ventral
ACC might also be a neuroimaging marker of anxious depres-
sion.

The middle temporal gyrus is activated in tasks involved in
decision-making processes [40,41] and semantic memory [42,43].
The posterior portion of the superior temporal gyrus is a key node
for the theory of mind [44]. We  observed decreased fALFF values
in the left middle temporal gyrus and increased values in the
right superior temporal gyrus of patients with anxious depression
relative to remitted patients and healthy controls. We  speculate
that functional deficits in the middle and superior temporal gyri,
as well as the ventral ACC, may  provide the neurobiological
basis for aberrant emotional dysregulation and impaired decision
making in anxious depression. Wang et al. [45] found decreased
regional homogeneity in the left middle and right inferior temporal
gyri in first-episode, drug-naïve patients with MDD. Lee et al. [46]
reported that the gray matter concentration of the middle-superior
temporal gyri was  decreased in 47 patients with MDD.  Carlson et al.
[47] found improvements in depression ratings that correlated
ous neural activity in the anterior insula and anterior cingulate
rg/10.1016/j.bbr.2014.11.047

with metabolic changes in the right middle and superior temporal
gyri with positron emission tomography following ketamine
treatment. Based on previous findings, we  speculate that low fALFF
values in the middle and superior temporal gyri might be related
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Fig. 3. Comparisons of the mean ALFF values (upper) and fALFF values (bottom) in each ROI across the anxious depression, remitted depression, and healthy control groups.
T e com
t

t
a

t
p
r
c
w

366

367

368

369

370

371

372

373

374

375

376

377
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o the dysfunction of emotional memory and social interactions in
nxious depression.

In this study, we also found decreased ALFF and fALFF values in
he bilateral lingual gyrus in the anxious depression group com-
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ared to the other two groups. Jing and colleagues (2013) found
educed ALFF/fALFF values in the left lingual gyrus in patients with
urrent depression relative to healthy controls. The lingual gyrus is
ithin the visual system, and links to the posterior insular, playing
parisons. The single asterisks represent a significance level of 0.01 < p < 0.05, while

an important role in integrating visual information with intro-
spective sensation or introspective stimuli [48,49]. Therefore, we
speculate that the decreased ALFF and fALFF values in our study
may  indicate impairments in introspective integration processing
ous neural activity in the anterior insula and anterior cingulate
rg/10.1016/j.bbr.2014.11.047

in anxious depression. This is consistent with our previous study
that showed decreased fALFF values in the lingual gyrus in the
group with depression relative to a sibling group as well as a healthy
control group [18]. The decreased ALFF and fALLF measurements in
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ur study, along with the evidence from previous studies, suggest
hat the impairments in introspective integration associated with
nxious depression may  also be a depressive state marker.

Functional connectivity analysis is a biased approach that lacks
lobal and independent views due to its priori selection of the seed
oxel or region [50]. In the present study, we used ALFF and fALFF to
nvestigate the strength or intensity of low-frequency oscillations
t each voxel; this was a data-driven unbiased analysis. A notice-
ble difference between our current findings and those reported
y Andreescu et al. [9] was that, instead of focusing only on the
Please cite this article in press as: Liu C-H, et al. Abnormal spontane
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efault mode network, we investigated voxel-wise changes in the
hole brain. Moreover, the fALFF is advantageous over ALFF in sev-

ral aspects, such as higher sensitivity and specificity and fewer
 patients with depression who were on psychotropic medication, patients with
.01; * indicates 0.01 < p ≤ 0.05.

biases from nonspecific physiological noise [14]. However, as the
root mean square of low-frequency oscillations in the white matter
is about 60% lower than that in gray matter, the ALFF measure-
ment has higher test–retest reliability in gray matter [25,51]. In our
results (Fig. 2), more regions showed significant group differences
in the fALFF measurements than in the ALFF, possibly caused by the
effective suppression of fALFF of the nonspecific signals, which sig-
nificantly improved the specificity and sensitivity of regional brain
spontaneous fluctuations.

There were several limitations in our study. First, almost all
ous neural activity in the anterior insula and anterior cingulate
rg/10.1016/j.bbr.2014.11.047

of the patients were on psychotropic medication due to ethical
considerations. We  also lacked detailed information regarding
medication doses or the duration of treatment in the two  patient
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Fig. 5. (A) ANOVA differences in fALFF among the three groups. The color bar sig-
nifies the F-value of the group analysis. The degree of freedom for the F statistic in
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the individual mean ALFF or fALFF value of the right dorsal anterior insular (peak
coordinate: 42, 6, 15; cluster size: 20) and the HAMA scores in the pooled depres-
sion group (ALFF, r = 0.536, p < 0.001; fALFF, r = 0.519, p < 0.001). The left side of the
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roups. Therefore, we cannot rule out the potential impact of
edication. Psychotropic medications have been implicated in

ltered synaptic plasticity and neuroprotective, neurogenetic, and
nti-inflammatory actions [45,52–54]. We  found no obvious dif-
erences between patients with psychotropic medication-treated
epression and those without psychotropic medication treatment.
econd, the current study design cannot conclusively specify the
ole of the dorsal anterior insula in the neuropathology of anxious
epression given the fact that the HAMD and HAMA scores corre-

ated highly. Distinguishing the role of the insula in anxiety from
hat in depression, would require analysis of patients with active
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epression with high versus low anxiety. Future studies involving
arger numbers of nonmedicated subjects with remitted and active
epression are needed to exclude medication effects and to better

ig. 6. (A) ANOVA differences in fALFF values among the three groups. The color bar
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or  the right ventral anterior cingulate cortex (ACC) is 8.58. (B) Pearson correlation
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elucidate the pathophysiologic mechanisms underlying anxious
depression.

The neural mechanisms of anxious depression are understudied
in the field of neuropsychiatry. The limited studies that have been
reported in the literature are not consistent in their definitions of
anxious depression. Some of them used a dimensional definition
(depression with high levels of anxiety symptoms), and some used
a syndrome definition (diagnosis of major depression plus an anx-
iety disorder) [2,55]. Here, we studied anxious depression with the
dimensional definition. The current study found that patients with
anxious depression had altered intrinsic neural oscillations within
corticolimbic circuits, including the insula and ventral ACC. The
alterations in the right ACC and right dorsal anterior insula may  play
a critical role in the symptomatology of depression and anxiety,
respectively. This hypothesis warrants future studies to investigate
the possibility that these regions may  be important biomarkers for
the treatment of anxious depression.
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