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Abstract

& Recent evidence in cognitive neuroscience has suggested
that attention is a complex organ system subserved by at least
three attentional networks in the brain, for alerting, orienting,
and executive control functions. However, how these different
networks work together to give rise to the seemingly unitary
mental faculty of attention remains unclear. We describe a con-
nectionist model of human attentional networks to explore the
possible interplays among the networks from a computational
perspective. This model is developed in the framework of
leabra (local, error-driven, and associative, biologically realistic

algorithm) and simultaneously involves these attentional net-
works connected in a biologically inspired way. We evaluate the
model by simulating the empirical data collected on normal hu-
man subjects using the Attentional Network Test (ANT). The
simulation results fit the experimental data well. In addition, we
show that the same model, with a single parameter change that
affects executive control, is able to simulate the empirical data col-
lected from patients with schizophrenia. This model represents a
plausible connectionist explanation for the functional structure
and interaction of human attentional networks. &

INTRODUCTION

Although the concept of attention is well understood by
many, the mechanism by which this function operates
remains unclear. Recent advances in cognitive neurosci-
ence have prompted a renewed interest in treating at-
tention as a neural organ system and have bolstered
interest in seeking its neural underpinnings (see Posner
& Fan, in press; Posner, 2004). One such organ theoretic
account advocates that there exist multiple attentional
networks in the brain, with each responsible for a dif-
ferent aspect of attention (e.g., Raz & Buhle, 2006; Posner
& Dehaene, 2000; Posner & Raichle, 1994; Posner &
Petersen, 1990). At least three different attentional net-
works, for alerting, orienting, and executive control,
have been distinguished (see Fan, Raz, & Posner, 2003,
for a review). Specifically, alerting refers to the function of
achieving and maintaining a heightened internal state of
arousal in preparation for coming task-related events.
The alerting network has been associated with thalamic,
frontal, and parietal areas. An example of the alerting
network pathology is hemispatial neglect syndrome, a
neuropsychological impairment following unilateral su-
perior parietal damage in which patients neglect objects
and events in the contralateral hemispace and appear to
be blind, deaf, and numb on this side of space. Orienting
refers to selectively focusing on one or a few items out of
many candidate inputs. The orienting network includes
parts of the superior and inferior parietal lobe, frontal
eye fields, the subcortical collicular pathway (the superior

colliculus of the midbrain and the pulvinar), and reticular
nucleus of the thalamus. A particular important structure
in this network is the posterior parietal cortex, a part of
the dorsal ‘‘where’’ pathway (Ungerleider & Mishkin,
1982), which is thought to host multiple supramodal
spatial representations in egocentric frames and to guide
movements (Wang, Johnson, Sun, & Zhang, 2005; Colby
& Goldberg, 1999; Egeth & Yantis, 1997). Finally, execu-
tive control refers to monitoring and resolving conflicts
in planning, decision making, error detection, and over-
coming habitual actions. The executive control network
includes the midline frontal areas (anterior cingulate
cortex [ACC]), lateral prefrontal cortex, and the basal
ganglia. These regions are the target areas of the ventral
tegmental dopamine system (Montague, Hyman, & Cohen,
2004; Holroyd & Coles, 2002; Braver & Cohen, 1999). The
role of executive control is evidential in a range of Stroop-
related tasks (see MacLeod & MacDonald, 2000; MacLeod,
1991).

The attentional networks account of human attention
has been systematically examined in recent years using a
variety of approaches (e.g., see Raz & Buhle, 2006). Ge-
netically, Fan, Wu, Fossella, and Posner (2001) explored
the heritability of the networks by comparing attentional
performance between monozygotic and dizygotic twins
and found that different networks possessed different
degrees of heritability. The underlying genetic variation
that might contribute to the brain activation related to
executive control has also been investigated (Fan, Fossella,
Sommer, Wu, & Posner, 2003). Developmentally, evidence
has suggested that different attentional networks possess
different developmental profiles. Using children aged from
6 to 10 years old, one study has shown that whereas the
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alerting network continues to develop up to and beyond
age 10, the executive control network stabilizes after age 7,
and the orienting network shows little development
during this period (Rueda et al., 2004). Neuropathologi-
cally, it has been found that patients with various atten-
tional disorders often show deficiencies in specific
attentional networks. For example, it has been demon-
strated that the attentional deficits associated with schizo-
phrenia mainly stem from deficits in the executive control
network (Wang, Fan, et al., 2005). Selective impairment of
attentional networks has also been found in patients with
borderline personality disorder (Posner et al., 2002) and
attention deficit/hyperactivity disorder (ADHD) (Konrad,
Neufang, Hanisch, Fink, & Herpertz-Dahlmann, 2006;
Oberlin, Alford, & Marrocco, 2005; Booth, Carlson, &
Tucker, 2001). Recently, a neuroimaging study using
functional magnetic resonance imaging (fMRI) was con-
ducted to examine the brain activity in an integrated task
designed to simultaneously involve different attentional
types (Fan, McCandliss, Fossella, Flombaum, & Posner,
2005). The various attentional components of the task
were found to differentially activate separable anatomical
networks, which is consistent with predictions from the
attentional networks theory.

The organ theoretic attentional networks account of
attention highlights the notion that attention is a com-
plex and multifaceted system. It remains unclear, how-
ever, how different attentional networks work together
to achieve the appearance of a unitary mental faculty.
For example, conflicting results on how the attentional
networks interact have been reported. On the one hand,
the claim that different types of attention are subserved
by distinctive attentional networks implies that these
underlying attentional networks might be independent.
This independence hypothesis has been supported by
a behavioral study in which no correlation in perfor-
mance was found between the three networks, measured
using a behavioral testing procedure (Fan, McCandliss,
Sommer, Raz, & Posner, 2002). However, in a larger
study using a similar testing procedure, a significant
correlation between the orienting and executive control
network was found (Fossella, Posner, Fan, Swanson, &
Pfaff, 2002). Interactions among other networks were
also observed using a slightly modified task (Callejas,
Lupianez, & Tudela, 2004). Although ‘‘it would be
surprising if the networks did not interact and influence
each in other in various tasks, because there are cer-
tainly connections between them,’’ as noted by Fan and
Posner (2004, p. 212), these inconsistent findings sug-
gest an intriguing relationship among the attentional
networks and have profound implications for the use of
the organ theoretic account of attention in systematical-
ly explaining various normal and abnormal attentional
processes.

One approach to addressing these issues is to develop
computational models of attention that are capable of
simulating the internal workings of relevant neuronal net-

works (Anderson & Lebiere, 2003; Cohen & Tong, 2001;
O’Reilly & Munakata, 2000; Churchland & Sejnowski,
1992). As detailed and computationally implementable
hypotheses about real neurobiological systems, compu-
tational models have the advantage of explicitly expos-
ing the computational theories, representations, and
algorithms underlying cognitive operations (Marr,
1982). By systematically manipulating these computa-
tional structures and examining how the models work,
we hope to infer and better understand, from an infor-
mation processing perspective, how the real systems
work and, more importantly, why they work the way
they do. In addition, the models have the potential to
make novel predictions. When the function of a model
component is disrupted, for example, model perfor-
mance changes in a predicted way, which can be com-
putationally simulated and then empirically validated.

Developing computational models of human atten-
tion has been a fruitful ongoing research endeavor. For
example, Cohen, Romero, Servan-Schreiber, and Farah
(1994) developed a connectionist model of orienting-
based spatial attention. In this model, selective atten-
tion is achieved by a ‘‘winner-take-all’’ type of competi-
tion among multiple attention units, and the resulting
activation of these attention units in turn enhances (or
hurts) the corresponding perception units (Desimone &
Duncan, 1995). A similar mechanism was used in a well-
known connectionist model of executive control in the
Stroop task, where the competition was between differ-
ent pathways with different strengths (Cohen, Dunbar, &
McClelland, 1990). This model was extended recently to
link more closely the ACC with executive control and
conflict monitoring (Botvinick, Cohen, & Carter, 2004;
Botvinick, Braver, Barch, Carter, & Cohen, 2001).

Although these models provide important insights on
how neural computations realize attentional selection,
from the organ theoretic viewpoint it is clear that they
often emphasize only one or a few particular aspects of
attention. If attention is better viewed as a complex
system subserved by multiple attentional networks and
manifested through different types of attention, it is es-
sential that we develop computational models that si-
multaneously involve multiple attentional networks. By
doing so, different aspects of attention can be simulta-
neously simulated, possible interactions among atten-
tional networks can be examined, and a more complete
and integrated understanding of the work of human at-
tention can be achieved.

In this study, we have constructed such a computa-
tional model of attention. The model is developed in a
biologically realistic connectionist framework named
leabra (local, error-driven, and associative, biologically
realistic algorithm) (O’Reilly & Munakata, 2000). One
unique feature of our model is that it simultaneously
includes multiple attentional networks as advocated by
the organ theoretic account described above. As a re-
sult, the issue of how these networks work together to
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produce various behavioral manifestations can be system-
atically explored. We believe that the model represents
a plausible computational theory and implementation of
how different attentional networks function in a coherent
organ system. To evaluate the model, we have applied
the model to simulate the empirical results acquired in
the Attentional Network Test (ANT), from both normal
adult subjects (Fan et al., 2002) and schizophrenic pa-
tients (Wang, Fan, et al., 2005).

METHODS

Attentional Network Test

The ANT is an experimental paradigm designed to simul-
taneously test the effects of the three attentional net-
works and to evaluate their interrelationships (Fan et al.,
2002) (see Figure 1). In the ANT, the stimulus consists of
a row of five horizontal arrows and the participants’ task
is to report the direction (left or right) in which the cen-
ter arrow (the target) points. The four arrows surround-
ing the target (two on each side) serve as flankers and can
point either in the same (the congruent condition) or op-
posite (the incongruent condition) direction as the cen-
ter arrow. An additional condition in which the flankers
are four lines with no arrowheads is called the neutral
condition. Presumably additional executive control effort
is needed to handle the incongruent condition due to

interference from flankers, leading to a flanker effect (see
Bush, Luu, & Posner, 2000; MacLeod & MacDonald, 2000;
MacLeod, 1991, for reviews).

To introduce orienting and alerting components, the
ANT adopts a spatial cuing technique. First, while the
participants are instructed to always focus on center
fixation crosshairs (‘‘+’’), the stimulus is to be presented
at one of two possible locations, either above the fixation
point (top) or below it (bottom). Presumably, the partic-
ipants have to reorient their attention in order to identify
the direction of the target. Second, a cue (‘‘*’’) may (the
cued condition) or may not (the no-cue condition) be
presented before the appearance of the stimulus. If the
cue is presented, it essentially alerts the participants that
the stimulus will soon appear. Third, the alerting cue
may be presented at one of three possible locations: the
center fixation location (the center-cue condition, over-
lapping with the fixation point), the top or bottom
location where the stimulus is to appear (the spatial-
cue condition), or at both top and bottom locations (the
double-cue condition, using two ‘‘*’’ symbols). Note that
in the spatial-cue condition, the cue location always
validly predicts where the stimulus is to appear. However,
this is not the case in the center-cue and the double-cue
conditions, in which the participants cannot know the
location of the incoming stimulus.

Participants indicate the direction of the target by
pressing an appropriate response key and the reaction

Figure 1. A sketch of

the design of the ANT based

on Fan et al. (2002). The
goal of the task is to quickly

and accurately report, by

keypressing, the direction

of the center arrow (target) in
the stimulus row.
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time (RT) is recorded. The following formulae are then
adopted to measure the effect of each attentional net-
work:

Alerting network effect ¼
RTðno cueÞ � RTðdouble cueÞ

Orienting network effect ¼
RTðcenter cueÞ � RTðspatial cueÞ

Executive control network effect ¼
RTðincongruentÞ � RTðcongruentÞ

A study on normal adult participants using the ANT
showed an alerting effect of 47 ± 18 msec, an orienting
effect of 51 ± 21 msec, and an executive control effect of
84 ± 25 msec (Fan et al., 2002). No evidence of
significant correlation was found among the effect mea-
sures of the three attentional networks.

It should be noted that the ANT paradigm uses three
numbers, in units of time, as the measures of network
effects. Because each number actually results from a sub-
traction of two RT numbers, care should be taken to
appropriately interpret them. For example, a large alert-
ing measure may be due to a long RT in the no-cue
condition (which indicates difficulty in maintaining alert-
ness without a cue and thus a less efficient alerting
attention), or a short RT in the double-cue condition
(which indicates a more efficient use of the alerting cue),
or a combination of both factors. Similar confounding
exists for the orienting and executive control effect
measures. Therefore, by the effect numbers alone, it is
hard if not impossible to tell for sure how well each
network performs and how the system as a whole works
together. This is probably one factor that contributes to
conflicting findings in term of the interrelationship
among different attentional networks. As a result, it
has been suggested that to properly interpret the ANT
measures, the task, the full range of RTs, and the ac-
curacy data should all be taken into account (Fan &
Posner, 2004; Posner et al., 2002).

A small RT difference (about 11 msec) between the
center-cue and double-cue conditions has been found
(Fan et al., 2002). This may have to do with a subtle dif-
ference between the two conditions, which is also re-
flected by their different uses in the two formulae above
calculating the alerting and orienting effects. Specifically,
because there are two ‘‘*’’ symbols appearing simulta-
neously as the cue at both the ‘‘top’’ and ‘‘bottom’’ loca-
tions in the double-cue condition, attention may tend to
be diffused a little bit compared to the center-cue con-
dition where only one ‘‘*’’ symbol appears as the cue at
the center fixation location. As a result, RT(center cue) �
RT(spatial cue) seems to be a purer measure for the
orienting effect because both the center-cue and spatial-
cue conditions involve only one ‘‘*’’ symbol as the cue.

Similarly, RT(no cue) � RT(double cue) seems to be a
purer measure for the alerting effect. However, because
the difference between the two conditions is small, either
one may be used in the place of another without signif-
icantly affecting the effect measures. This was the proce-
dure used in an fMRI study of attentional networks (Fan
et al., 2005), where the double-cue condition was omitted
and the center-cue condition was used in calculating both
the alerting and orienting effects. That is,

Alerting network effect ¼ RTðno cueÞ � RTðcenter cueÞ

We have adopted the same practice in our modeling
work reported below.

Computational Model of the ANT

To further explore how different attentional networks
work together to give rise to the task performance and
network effect measures, we have developed a compu-
tational model of the attentional networks based on the
ANT.1 By simultaneously including modules of all three
attentional networks and connecting them based on
sound biologically realistic principles, we hope the over-
all model can perform the ANT task and generate effect
measures that are comparable with human data. Be-
cause this model makes the underlying information
representations and algorithms explicit, it has the po-
tential to provide a more detailed and computationally
executable explanation for how the task is performed
and how different attentional networks interact. In ad-
dition, the model makes predictions that can be com-
putationally simulated and empirically tested.

Our model is implemented in a connectionist model-
ing framework called leabra, which is described in
(O’Reilly & Munakata, 2000; O’Reilly, 1998). Leabra is
different from other connectionist modeling frameworks
in that it is biologically realistic and possesses several
unique features. First, it is constrained by established
neurological findings. For example, leabra neurons use
an activation function that models the known electro-
physiology of real neurons as closely as possible while
keeping the computation tractable. The connections
among neurons in leabra cannot freely change signs
(i.e., changing from an excitatory link to an inhibitory
link, and vice versa), which is possible in earlier artificial
neural networks systems and has been shown to be
biologically unrealistic. In addition to the biologically in-
spired Hebbian learning algorithm for model learning,
leabra uses a special type of Hebbian learning algorithm
called contrastive Hebbian learning for error-based task
learning, which uses a two-phase mechanism to incor-
porate error signals. As a result, in leabra, it is no longer
necessary to backpropagate error signals from output
nodes to input nodes, a common criticism for the bio-
logically unrealistic backpropagation learning algorithm.
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Second, leabra is a coherently integrated framework.
Many distinctions in traditional neural network model-
ing, including supervised versus unsurpervised learning,
feedforward versus recurrent networks, and pattern
recognition versus self-organization maps, are unified in
a single coherent framework. Therefore, for any given
task, different information transformation mechanisms
and different learning algorithms (Hebbian learning,
competitive learning, and error-driven learning) can
simultaneously occur and interact. Third, due partly to
its biological realism, it is now possible, for example, to
develop one leabra network to simulate the primary
visual cortex and another network to simulate the
posterior parietal cortex, and connect the two networks
together with realistic neuroanatomical constraints to
form the dorsal ‘‘where’’ pathway. A larger visual cortical
system can then be constructed by combining this dorsal
network with networks representing the ventral ‘‘what’’
pathway. Each network can have its own properties such
as the average activation level and the connection den-
sity. As a result, leabra offers us the capability and flex-
ibility to build hierarchies of neural networks to simulate
complex cognitive systems.

The conceptual structure of the model is shown in
Figure 2. This model contains modules corresponding to

the three attentional networks, as well as modules for
perception (e.g., retina and the primary visual cortex),
object recognition (e.g., the what pathway), spatial infor-
mation processing (e.g., the where pathway), and deci-
sion control (output). The module connections conform
to various known constraints at both anatomical and
functional levels (Farah, 2000; O’Reilly & Munakata,
2000). Specifically, the alerting network receives input
mainly from the visual cortex. As soon as an interesting
stimulus (e.g., the cue) appears in the visual cortex the
alerting network detects it, becomes activated, and then
sends its output to other relevant networks (e.g., the ori-
enting network) so as to get them alerted and primed.
Note that because the alerting network essentially is just
a general-purpose priming/arousal processor, it does not
distinguish among different stimuli and/or their spatial
locations. Such distinctions occur in modules related to
the what and where pathways. The orienting network
differentiates spatial locations based on input from the
visual cortex. Given the typical retinotopic representa-
tions of these networks, any stimulus that appears in a
specific location in the visual cortex often only activates
specific neurons in the orienting network that monitor
that location (i.e., within the neurons’ perception fields)
(Farah, 2000). The visual cortex network also sends its
retinotopy-based representations to networks in the
ventral object pathway. The difference between the
dorsal orienting network and the ventral object network
is that the former magnifies the spatial distinctions among
the stimuli and ignores the object-recognition-related
features, whereas the latter emphasizes those visual
features that are critical for object recognition but col-
lapses on those spatial dimensions. The influence of
the orienting network on object recognition (e.g., so that
attention can be focused more on the center target
instead of peripheral flankers in the ANT) is realized
through the connection between the two networks
(O’Reilly & Munakata, 2000, Chapter 8). Normally, the
output of the object pathway would lead to decisions in
the output network (e.g., response module) based on the
task goal. However, it is possible that the object pathway’s
output is too weak or too confusing to afford a decision.
In such a case, the executive control network plays a role.
Its main function is conflict monitoring and resolution
(see also Botvinick et al., 2001). It receives input from the
object pathway and the orienting network. If task-related
conflict (e.g., neurons for ‘‘left-pointed arrow’’ and neu-
rons for ‘‘right-pointed arrow’’ are both receiving input)
is detected, the executive control network exerts influ-
ence to emphasize the most relevant features (e.g., the
center arrow) and deemphasize the less relevant features
(e.g., the peripheral arrows). The net result would be
that, after the intervention of executive control, decision
making becomes possible.

The implementation of the above conceptual model
in the leabra framework is basically a straightforward
mapping from the conceptual networks to leabra net-

Figure 2. The conceptual sketch of the connectionist model of the

attentional networks based on the ANT. Each box represents an

anatomic or functional neuronal network. The connections among
networks are bidirectional (except from visual input to primary

visual cortex) and the connection patterns match the function of

each network. For the purpose of the modeling work reported in

this article, the output network is connected only with the object
pathway (i.e., to detect the target arrowhead direction). Similarly,

the executive control network is connected only with the object

pathway (i.e., to detect and resolve conflicts from distracters). It is

possible to also connect the executive control network with the
orienting network so to monitor and resolve spatial dimension

related conflicts. The dashed connection ref lects this possibility.
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works,2 constrained by the built-in principles of leabra
and the task requirement of the ANT. A snapshot of the
implementation is shown in Figure 3. Nine leabra net-
works are included, with the main characteristics sum-
marized in Table 1.

The input network contains 300 neurons, which are
used to represent the visual input at the level of the ret-
ina. Each arrow in an ANT stimulus is represented by
15 neurons, organized in a 5 � 3 matrix.3 At the next level,
each stimulus of the ANT, which contains five arrows, is
represented by aligning five such 5 � 3 matrices horizon-
tally.4 Finally, the vertical dimension of the input network

is naturally used to represent the possible cue/stimulus
position (top, center, and bottom). Note that the in-
put network actually contains 12 rows of neurons. Be-
cause each stimulus requires three rows of neurons
for proper representation, the input network actually
consists of four ‘‘mega’’ rows. We use the top two mega
rows to represent the top location and bottom two mega
rows to represent the center location. Within each loca-
tion’s representation, the top mega row is used only
for representing stimuli and the bottom mega row is
used only for representing cues.5 Apparently, because
the network only contains 4 mega rows, with 2 for each
location (top and center), it does not incorporate the
bottom location.

The V1 network, which simulates the visual cortex,
adopts a representation scheme that is exactly the same
as that of the input network. In other words, neuron ac-
tivations from the input network are literally copied to
the V1 network through a one-to-one connection, result-
ing in a retinotopic representation in the V1 network.
It is important to note, however, that the V1 network,
which represents the visual cortex, does not have to be
the exact copy of the input network, which represents
the retina—nontrivial information processing can occur
between the two layers. This is one motivation for us to
include two seemingly redundant networks in the cur-
rent model.

The alerting network contains only one neuron. The
function of this network is to monitor the activity in the
V1 network and get excited if anything interesting (e.g.,
a cue) appears there. The alerting network sends its
output to the Spatial Pathway 1 network, resulting in a
general type of priming effect in the spatial pathway.

The information transformation from the V1 network
along the spatial pathway (Spatial Pathway 1 and Spatial
Pathway 2) is a result of collapsing on visual features
and capitalizing the spatial features. For example, if we

Figure 3. A snapshot of the model implementation in leabra.

Activation values are grayscale coded (roughly 0 to 1 with light to

dark). Visual input (Input) and the primary visual cortex (V1) adopt
retinotopic representations (e.g., the incongruent condition is

shown here with the center target arrow pointing to the left). The

alerting network (Alerting) is implemented by a single neuron

network. The orienting network is implemented through a hierarchy
of 2 layers of network (Spatial Pathway 1 and Spatial Pathway 2),

with the higher level providing a more condensed representation.

The same is true for the object pathway (Object Pathway 1 and Object
Pathway 2). The executive control network (Executive Control)

consists of 2 neurons, responsible for detecting conflict occurring

in the object pathway. The activation of either neuron would indicate

the occurrence of a conflict, which in turn exerts its inf luence
back to the object pathway (through its feedback connection) to

emphasize the center target. This eventually leads to a decision

neuron in the output network (Output) to reach the decision

threshold and respond.

Table 1. Key Parameters in the Leabra Model of ANT

Network
Geometry

(x � y � z)

kWTA (No. of
Neurons if >1,

Percentage if <1)

Input 5 � 12 � 5 30

V1 5 � 12 � 5 30

Alerting 1 � 1 � 1 0.25

Spatial Pathway 1 2 � 4 � 5 0.25

Spatial Pathway 2 2 � 4 � 3 0.25

Object Pathway 1 2 � 4 � 5 5

Object Pathway 2 2 � 4 � 3 3

Executive Control 2 � 1 � 1 0.25

Output 2 � 4 � 1 1
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compare the geometric structures of the V1 (5 � 12 � 5)
and Spatial Pathway 1 (2 � 4 � 5) networks, it is clear that
the z dimension, which represents the five horizontal
arrows in the stimulus, does not change, but the x and y
dimensions, which represent the detailed visual features
of arrows, are dramatically reduced. The connection pat-
tern from the V1 network to the Spatial Pathway 1 net-
work demonstrates how the visual feature reduction is
done. Figure 4A shows the nonzero connection weights
from the V1 network to the top left neuron in the Spatial
Pathway 1 network. It is clear that this specific Spatial
Pathway 1 neuron’s perceptual field is sensitive only to
the spatial location (the top left corner of the V1 net-
work) but ignores detailed visual features (i.e., whatever
visual stimulus appearing there will tend to activate that
Spatial Pathway 1 neuron). Other Spatial Pathway 1 neu-
rons possess similar perceptual fields but with the cov-
ering areas shifted rightward or downward (with some
overlaps), and therefore the whole V1 network is cov-
ered. Further but similar compression is carried out by
the projection from the Spatial Pathway 1 network to the
Spatial Pathway 2 network.

This information transformation pattern is significant-
ly different from that along the object pathway (Object
Pathway 1 and Object Pathway 2), where the visual fea-
tures are emphasized but the spatial distinctions are ig-
nored. Figure 4B shows the nonzero connection weights
from the V1 network to the top left neuron in the Object
Pathway 1 network. This connection pattern indicates
that this specific Object Pathway 1 neuron responds only
to the left-pointed arrow. On the contrary, the pattern
of connection from the V1 network to the second
neuron (to the left of the top left neuron) in the Object
Pathway 1 network is quite different. Figure 4C shows
that this second neuron responds to the right-pointed
arrow. Object recognition is further enhanced through
the Object Pathway 2 network, with the left two neurons

representing the left distracters, the center two neurons
representing the target, and the right two neurons rep-
resenting the right distracters. The two neurons in each
group represent left-pointed and right-pointed arrows,
respectively.

Connections exist between the spatial pathway net-
works and the object pathway networks to represent the
possible interactions between the two pathways. The
connection patterns largely follow a retinotopic fashion
of mapping. That is, specific areas in a spatial network
roughly map to the corresponding areas in the cor-
responding object network (see Figure 4D for an exam-
ple). This type of connection allows activations in a
spatial pathway network to somehow ‘‘prime’’ the
corresponding neurons in an object pathway network
even when the visual stimulus is not of the type that the
object pathway neurons are designated to recognize.
This connection is one of the major reasons why an
alerting cue, which activates the alerting network and
then the spatial pathway networks, can affect later target
detection performance. Similar connections have been
adopted in a Stroop effect model (O’Reilly & Munakata,
2000).

The executive control network consists of two neu-
rons, each responsible for detecting a specific type of
conflict. Figure 4E represents the connection pattern
from the Object Pathway 2 network to the left neuron. It
shows that this neuron is activated when a left-pointed
target arrow flanked by two right-pointed distracters is
detected. Figure 4F represents the connection pattern
from the Object Pathway 2 network to the right neuron.
It shows that this neuron is activated when a right-
pointed target arrow flanked by two left-pointed dis-
tracters is detected. In either case, one neuron in the
executive control network will be activated. This activa-
tion feeds back to the Object Pathway 2 network
through the connection from the executive control

Figure 4. Key connection
patterns used in the model.

(A) The receiving weights of

the top left neuron in the

Spatial Pathway 1 network
from the V1 network. (B) The

receiving weights of the top

left neuron in the Object

Pathway 1 network from the
V1 network. (C) The receiving

weights of the second neuron

(the left to the top left neuron)

in the Object Pathway 1
network from the V1 network.

(D) The receiving weights of

the top left neuron in the
Object Pathway 1 network

from the Spatial Pathway 1

network. (E) The receiving weights of the left neuron in the executive control network from the Object Pathway 2 network. (F ) The receiving

weights of the right neuron in the executive control network from the Object Pathway 2 network. Weight values are grayscale coded (roughly 0
to 1 with light to dark).
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network to the Object Pathway 2 network and strength-
ens the activation of the two center target neurons,
which in effect inhibit the activations of distracter neu-
rons due to the built-in constraints of leabra. As a result,
the executive control network performs both conflict
detection and conflict resolution functions.

Finally, the output network, through its left and right
neuron in each row, is activated by the center target
neuron in the Object Pathway 2 network. When the
center target neurons are sufficiently activated, one out-
put neuron will in turn be activated. When its activation
reaches a set threshold (0.95) a response is said to have
been made. The duration, in number of cycles, of the
settling process is taken as the measure of model RT.

The ‘‘k winners take all’’ (kWTA) parameter is a critical
parameter in leabra. One of its functions is to control the
activation level of each network without using explicit
inhibitory neurons. In our model, all connections are
excitatory and we use leabra’s built-in kWTA and leaking
mechanisms to control the networks’ activation levels
(see Herd, Banich, & O’Reilly, 2006). As shown in Table 1,
the setting of the kWTA parameters is typically straight-
forward and based on the number of neurons we would
like to be activated in each network. Except for these
kWTA parameters and the handpicked connection pat-
terns shown in Figure 4, all other parameters used in
our model are the default values of leabra (O’Reilly &
Munakata, 2000), including various default noise param-
eters in activation calculation.

RESULTS

We evaluate the model by first using it to perform the
ANT task. A reasonable fit between the model results and
the human subjects data lends support to the model as
a plausible theory of how the underlying attentional
networks function and interact. We then explore whether
the model can be used to make testable predictions by
applying it to model data from schizophrenic patients.

In a typical simulated ANT trial, stimuli are presented
to the model via the input network in a similar way as it
would be presented to a human subject (Fan et al.,
2002). Depending on the conditions, a cue, which can
be either a center cue or a spatial cue, may be presented
for a fixed period before the stimulus presentation (note
that the double cue condition was not simulated here
because the current version of model were not
equipped with enough neurons). The number of cycles
the output network takes to settle on a stable response
after the stimulus presentation serves as the measure of
model RT.

The simulation adopts a within-subjects design (i.e.,
each ‘‘simulated subject’’ performs all different condi-
tions of the task) and 100 simulated subjects have been
tested. The simulation results (in cycles) are shown in
Table 2, along with the experimental results (in milli-

seconds) from Fan et al. (2002). A regression analysis
shows that

RTðmillisecondsÞ ¼ 12:1� RTðcycleÞ

with an R2 of .99. We use this regression equation to
acquire predicted RTs in milliseconds, which are also
shown in Table 2 from easy comparison with experimen-
tal results.

From the results in Table 2, we can calculate the aver-
age RT in each condition and then estimate the effects of
the attentional networks following the formula provided
in Fan et al. (2002). We use the center-cue condition in
place of the double-cue condition to calculate the alert-
ing effect following the practice in (Fan et al., 2005). The
results, together with the experimental results of Fan
et al. (2002), are presented in Table 3. One notable dif-
ference is a larger alerting effect in modeling results. A
further examination shows that this is because the
model produced a larger RT in the no-cue condition,
which indicates that the model lacks general baseline
preparedness (e.g., in absence of a cue). However, the
modeling results match the experimental results reason-
ably well given the fact that we did not change leabra’s
default parameter values.

A correlation analysis based on the simulation data is
shown in Table 4, along with the experimental data from
Fan et al. (2002). It seems that the two sets of data reveal
similar correlation structures among the measures. In
general, most of the correlations are insignificant. An ex-
amination of how the model works suggests that differ-
ent networks function largely independently, with each
contributing to a distinct aspect of the overall task. The
significant positive correlation between the executive

Table 2. The Experimental and Modeling RTs (Mean ±
Standard Deviation)

RT

Modeling

Cue Target
Experimental

(msec) Milliseconds Cycles

No cue Neutral 529 ± 47 536 ± 7 44.3 ± 0.6

Congruent 530 ± 49 550 ± 8 45.5 ± 0.6

Incongruent 605 ± 59 629 ± 10 52.0 ± 0.8

Center Neutral 483 ± 46 490 ± 6 40.5 ± 0.5

Congruent 490 ± 48 477 ± 7 39.4 ± 0.6

Incongruent 585 ± 57 540 ± 9 44.6 ± 0.7

Spatial Neutral 442 ± 39 461 ± 6 38.1 ± 0.5

Congruent 446 ± 41 444 ± 7 36.7 ± 0.6

Incongruent 515 ± 58 500 ± 9 41.4 ± 0.8
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control effect and the overall mean RT, shown in both
the experiment and the simulation, is likely due to the
strong influence of longer RTs in the incongruent con-
dition on the overall mean RT. To a certain degree this
correlational structure derived from the modeling re-
sults lends support to the claim that there exist multiple
functionally distinctive attentional networks as advo-
cated by the organ theoretic account.

There is a notable discrepancy between the modeling
results and behavioral results in Table 4. Although the
modeling results show a significant negative correlation
between the alerting and orienting effect measures no
such a correlation was found in the Fan et al. (2002)
original empirical study. This discrepancy may be due to
the fact that we have used the same center-cue condi-
tion to calculate both the alerting and orienting effects
in the model whereas, in the Fan et al. study, separate
no-cue and center-cue conditions were used in each
calculation. In a certain sense this discrepancy serves as
an unexpected test about the model’s predictive power.
That is, can we obtain the same type of correlation if the
same center-cue condition is used in the Fan et al. study?
This appears to be the case. When we reanalyze the data
of Fan et al. using the same formulae we use here, we
find a correlation of �.20 between the alerting and
orienting effects. Although it is not statistically significant
( p = .20), the trend toward a negative correlation is
evident. The insignificance may be related to the rather
large variance in human subjects data.

A careful examination of the model reveals that a
possible subtle interplay between the alerting and ori-
enting networks may also play a role in producing the
negative correlation. Specifically, the alerting network
affects information processing through the spatial path-
way networks (see Figure 3). As a result, the spatial cues,
which simultaneously activate both the alerting network
and the target region in the spatial pathway networks,
essentially produce a confounded (alerting + orienting)
effect. If there is no interaction during the process, the
alerting effect will eventually be canceled out in the
calculation of the orienting effect (by subtracting the RT
in the spatial cue condition from that in the center-cue
condition), leading to no correlation between the alert-
ing and orienting effects. On the other hand, if there is
interaction between the two networks then a correlation
will arise. It seems that the modeling results support that
the latter is likely the case.

This discrepancy highlights an important aspect of the
model’s value. The model provides a detailed and
executable system that allows us to systematically ex-
plore not only how the simulated system may work but
also why it works. In addition, because the modeling
performance is essentially a function of model structures
and parameters, altering these model components may
lead to novel and testable predictions. To demonstrate
this, we have used the model to simulate schizophrenic
patients’ attentional networks profile. We recently used
the ANT paradigm to test the selective attentional
impairment in patients with schizophrenia (Wang, Fan,
et al., 2005). One of the major findings is that patients,
compared to normal controls, showed a much larger
executive control effect (153 ± 10 msec), indicating a
deficit in the executive control network. This result is
consistent with a large body of neuropsychological evi-
dence showing that schizophrenia involves attentional
deficits in general and dopamine-related executive con-
trol deficits in particular (Braver, Barch, & Cohen, 1999;
Braver & Cohen, 1999; Fletcher, McKenna, Friston, Frith,
& Dolan, 1999). Given that our model is able to simulate
normal subjects’ ANT performance, we hypothesize that
without resorting to more complex algorithms, but with
minimal and biologically justified changes, the model
should be able to simulate schizophrenic patient’s ANT
performance as well. To test this hypothesis, we make
only one change to our original model. The leaking con-
ductance parameter of the two neurons in the executive
control network is changed from the default 0.1 to 1.
Because this parameter in leabra summarizes the function
of potassium-based leaking channels in real neurons,
by increasing it we essentially make our executive con-
trol neurons harder to fire. This means that the conflict
detection capacity is damaged, which then leads to di-
minished conflict resolution capacity. We have run 100
‘‘simulated schizophrenic patients’’ with this change. Our

Table 3. Measures of Attentional Network Effects in
Milliseconds (Mean ± Standard Deviation)

Attentional Networks

Effect Alerting Orienting Executive Control

Experimental 47 ± 18 51 ± 21 84 ± 25

Modeling 70 ± 7 34 ± 6 66 ± 8

Table 4. Correlations among Attentional Networksa

Alerting Orienting
Executive
Control

Experiment:

Orienting .08

Executive control .05 �.12

Mean RT .09 .29 .44b

Model

Orienting �.47b

Executive control .08 �.003

Mean RT .09 .06 .24b

aCorrelations are calculated based on the relevant measures of all sub-
jects (or simulated subjects).
bCorrelation is significant at the .01 level.
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results show that although this manipulation leaves other
conditions largely intact, it greatly increases RTs in the
incongruent conditions, which result in a significant
increase in the executive control effect measure (66 ±
8 vs. 120 ± 9 msec).

DISCUSSION

Traditional wisdom has treated attention as a unitary
cognitive faculty. Recent advances in cognitive neurosci-
ence have suggested that attention be viewed as a com-
plex organ system that consists of multiple attentional
networks in the brain, with each responsible for a differ-
ent type of attention. At least three attentional networks
(i.e., alerting, orienting, and executive control) have
been identified at multiple levels (Posner, 2004; Posner &
Dehaene, 2000; Posner & Raichle, 1994). However, how the
different networks work together to give rise to the seem-
ingly unitary mental faculty of attention raises a challenge.

One approach to this issue is to develop principled
computational models (Cohen & Tong, 2001). These
models, often as detailed and executable hypotheses of
the real cognitive system, help to fill the gap by adopting
a unified information-processing-based language to ex-
plain how the system works. More importantly, these
models can be ‘‘opened’’ and more thoroughly exam-
ined in the sense that they explicitly expose the critical
but often hidden computational goals, representations,
and algorithms that implement the real system. In the
present study, we have developed a connectionist model
of human attentional networks in the biologically real-
istic connectionist modeling framework (O’Reilly &
Munakata, 2000). By simultaneously incorporating mul-
tiple attentional networks, the model offers a simulation
platform for us to hypothesize and infer in explicit detail
how information is represented and transformed along
different neuronal pathways and how different atten-
tional networks work together to produce observable
attention-related behavior.

We believe that our model represents a plausible
connectionist explanation for the attentional networks
account of attention. By presenting the model stimuli
similar to what a human subject in the ANT would see,
we show that the model is able to perform the task and
produce the RT patterns similar to what human subjects
demonstrated. The simulation results suggest that the
model captures the various attentional effects that the
ANT task was designed to measure. With a single pa-
rameter change to the model, we have shown that mod-
el is also able to simulate data collected from patients
with schizophrenia.

To further clarify how the model can be used as a com-
putational metaphor to explain these attentional effects,
we recapitulate the model’s behavior in various ANT con-
ditions. When a cue is presented, the primary visual
cortex module is activated, which in turn triggers the
alerting network. This cue-induced alerting affects later

stimulus processing because the alerting network will
remain excited for a while, which will activate the orient-
ing network, priming it to be ready for the incoming
stimulus and thus inducing the alerting effect. In addition,
when the cue is a spatial one (i.e., a cue that indicates
where the stimulus is to appear), it will further excite the
corresponding subregion of the orienting network. This
occurs because the orienting network adopts a retinoto-
py-based spatial representation of the environment. This
extra excitation in the subregion of the orienting network
will facilitate the corresponding stimulus processing in
the object pathway network, due to the connections
between them. This accounts for the orienting effect.
On the contrary, when the cue is a center one (i.e., the
cue appears in the fixation location and does not tell
where the stimulus is to appear), a similar facilitation
effect occurs; only this time it occurs in the wrong
location, which may hurt later stimulus processing due
to a possible disengagement process (Posner, 1980).
Finally, note that it is the object pathway network that
is responsible for the arrow direction detection. When the
incongruent stimulus (e.g., a left arrow flanked by four
right arrows) is presented, the object pathway network
may propose different responses, which compete for final
expression in the output network. The executive control
network detects the conflict and then activates, enhanc-
ing the center arrow and suppressing the flankers. This is
where the executive control attention plays a role. If we
increase the leaking conductance of neurons in the
executive control network, we essentially alter the normal
function of the network and impair its conflict monitoring
and resolution capacity. As a result, a larger executive
control effect is derived, which is consistent with the
experimental results from patients with schizophrenia.

Note that the model does not perform conventional
neural network learning (e.g., parameter tuning). The con-
nection patterns and weights are all manually set based on
known biological constraints and task-specific require-
ments. Although it is possible in principle to adopt leabra’s
built-in learning algorithms to let the model learn these
connection weights by itself, the current handcrafted
model demonstrates more clearly the concepts and ele-
ments that are responsible for the results.

In addition, the complexity of the model, both in terms
of the large number of built-in parameters and complex
pattern of connections, underscores the caution Fan and
Posner (2004) and Fan et al. (2002) advocate in explaining
the ANT measures. Because the ANT measures result from
multiple RT measures, it is quite possible to change one or
a few RT measures by imposing certain constraints in the
model, thus dramatically changing the effect measures and
the correlation structures. One example is to increase RTs
in the center-cue condition (which can be done by altering
the orienting network to weaken disengagement, for ex-
ample). As a result, the alerting effect would be lower and
the orienting effect would be higher, leading to even larger
negative correlation in the two networks.
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Model complexity can be reduced by following more
strict biologically realistic principles in model develop-
ment. Doing so will also permit us to more accurately
model and predict how damage in a specific part of the
network or connections can lead to specific behavioral
patterns. We have demonstrated this by showing that
we can alter the model to simulate schizophrenia data.
Based on the organ theoretic attentional networks ac-
count of attention, attentional impairments in many
other psychiatric disorders, such as ADHD, involve spe-
cific deficits in one or a few attentional networks. The
model developed in this study offers a framework for us
to start unfolding the computational structures underly-
ing these phenomena and to make testable predictions.

As another example of the model’s predictive power,
consider the possibility of invalid spatial cues. Posner’s
(1980) seminal work using invalid peripheral cues dem-
onstrated the validity effect. That is, subjects typically
responded faster to a target presented at the validly
cued location than that at the invalidly cued location. In
a certain sense it would seem that the validity effect is
simply a byproduct of the orienting effect. However, we
know that the alerting effect is sensitive to the temporal
contiguity between the cue and the stimulus, and the
executive control effect is sensitive to the degree of cue-
target contingency. If we add invalid spatial-cue con-
dition in the ANT task and manipulate the temporal
contiguity and cue-target contingency, we may expect
new interactions among different effects. If we feed the
model with these designed invalid spatial cues, the mod-
el would make clear predictions about what will happen,
which can then be empirically tested.

Finally, we want to reemphasize the critical challenge
that motivates the present study. That is, how do differ-
ent attentional networks work together to achieve seem-
ingly unitary attentional behavior? Indeed, the problem
of linking brain activation found in various neuroimaging
studies with observable psychological behavior and
avoiding practice of so-called neophrenology has become
a challenge for cognitive neuroscience in general (Cohen
& Tong, 2001). Although both the genetic and neural
‘‘shadows of the mind’’ reveal important aspects of
human cognition, neither alone fully explains cognition
(Scerif & Karmiloff-Smith, 2005). We propose a meta-
modeling approach to this problem (see also Wang, Fan,
& Yang, 2004). According to this approach, we need to
develop biologically realistic and psychologically plausi-
ble computational models at multiple levels and compare
them, contrast them, mutually justify them, and more
importantly, probe the link among them. We (Wang,
Fan, & Johnson, 2004) have developed a symbolic mod-
el of human attentional networks in ACT-R, a primarily
rule-based cognitive architecture (Anderson et al., 2004;
Anderson & Lebiere, 1998). The connectionist model
developed in this study represents another step toward
the goal of meta-modeling of human attention. Because
both the ACT-R-based model and the leabra-based model

are process models and fit the empirical data well, we can
parallel the two models and explore how ‘‘attention’’
manifests itself at different levels along the time dimen-
sion. This work is currently ongoing.
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Notes

1. The model can be downloaded from www.shis.uth.tmc.
edu/Members/hwang.
2. These networks are actually represented by leabra layers in
the overall model. We use the two terms (networks and layers)
interchangeably in discussing the model.
3. See the top left 5 � 3 neuron matrix of the Input network
in Figure 1 as an example, which literally represents a right-
pointed arrow.
4. For example, the top three rows in the input network in
Figure 1 contain a total of 5 � (5 � 3) = 75 neurons and
represent an incongruent stimulus, with the target pointing to
left and four flankers pointing to right.
5. Again, as an example, the input network in Figure 1 shows
that an incongruent stimulus is presented at the top location.
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